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Abstract 

The radiation environment at aircraft altitudes is caused primarily by high-energy 

particles originating from outside the near-earth environment.  These particles generally 

come from outside our solar system and are called galactic cosmic rays.  Occasionally 

however, a transient solar event will also accelerate energetic protons toward the earth.  If 

these protons reach the upper atmosphere, they produce secondary particles via 

collisions, resulting in increased radiation levels in the atmosphere.  Air crews and 

electronic systems flying at high altitudes during one of these events are subjected to 

these increased levels of radiation which can result in health problems for personnel and 

soft errors in electronics.  Much work has been performed to calculate radiation dose 

rates at flight levels due to non-solar energetic particles, however very few dose rate 

measurements have been made shortly after the eruption of a large solar flare.  Using 

energetic proton data measured at geosynchronous orbits and Monte Carlo transport 

codes, an attempt is made to estimate radiation dose rates at different altitudes and 

locations during solar events.  The goal is to provide accurate information about the 

radiation environment at high altitudes, which will allow aircraft and personnel to avoid 

locations where health or the mission may be negatively impacted. 
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PREDICTION OF FLIGHT-LEVEL RADIATION HAZARDS DUE TO SOLAR 

ENERGETIC PROTONS 

 

I. Introduction 

The earth is constantly bombarded by high-energy particles from space.  

Historically these particles were called galactic cosmic rays because they were thought to 

originate from deep space.  It was discovered later that a small percentage actually 

originates from the sun during solar disturbances.  All of these particles have the potential 

to do damage to both equipment and personnel.  Fortunately, the earth’s magnetic field 

and atmosphere both act as a shield to radiation originating from outside the terrestrial 

environment, preventing most of the harmful particles from reaching the surface.  

However, particles with enough energy can make their way through the magnetic field 

and penetrate deep into the atmosphere.  As a result, aircraft pilots and personnel, and 

electronic systems aboard high-flying aircraft are constantly exposed to a higher level of 

ionizing radiation than that received by the general population and systems located at the 

earth’s surface.   

Ionizing radiation refers to energetic particles that interact with an atom and can 

strip electrons or even break up the nucleus.  If this occurs in body tissues, it may result 

in health problems, and in electronics it can greatly increase the rate of single event 

upsets.  The problem for electronics will only get worse as more low power, smaller sized 

electronic devices are used in future aircraft (4:81). 
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Although models currently exist to predict the levels of ionizing radiation due to 

galactic cosmic rays, there are very few methods that account for the occasional burst of 

solar energetic particles, and the methods that do exist have only come about in the past 

few years.  The Air Force currently has no quantitative warning system in place to protect 

sensitive aircraft equipment and crew from these dangerous levels of radiation. 

The main source of this hazardous radiation is galactic cosmic radiation.  Galactic 

cosmic radiation is composed of high energy nuclei which are thought to propagate 

throughout all space unoccupied by dense matter.  The origin of these particles is still a 

matter of debate, but theories indicate that it may have both galactic and extragalactic 

sources (5).  Regardless of their origin, these particles range in energy from a few 

hundred MeV to 1011 GeV, and are often energetic enough to penetrate the earth’s 

magnetic field and enter the atmosphere.   

Data shows this galactic cosmic ray flux to be anti-correlated to the solar cycle, 

increasing in flux during solar minimum and decreasing in flux during solar maximum.  

During solar maximum, solar magnetic activity increases dramatically; this in turn causes 

many cosmic rays to be deflected before they can make their way through the heliosphere 

and to the earth’s magnetic field (29).  Thus we see a decrease in the galactic cosmic ray 

flux during solar maximum as shown in Figure 1 below.   

The second type of radiation that must be considered is that produced by the sun.  

A solar flare or coronal mass ejection (CME) may accelerate high-energy protons toward 

the earth.  If these particles reach the top of the atmosphere they will create a secondary 

particulate radiation via collisions.  Aircraft and aircraft personnel are then subjected to 
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this secondary radiation flux which is a function of geographic position (minimum at the 

equator, maximum at the poles), altitude of the aircraft (minimum at lower altitudes, 

maximum at higher altitudes), and solar activity. 

Figure 1: Panel a) shows solar activity levels as measured by sunspot numbers.  Panel b) shows the 
galactic cosmic ray count as measured by three different neutron monitors.  The inverse relationship 

between the two is due to increased magnetic activity during high solar activity, which causes 
incoming galactic cosmic rays to be deflected away from the heliosphere (11). 

 

Radiation exposure is usually expressed in terms of effective dose, with units 

given in sieverts (Sv).  A sievert is the SI unit of absorbed dose, and can be expressed as 

1 joule/kilogram.  Sometimes, harmful radiation exposure is expressed in units of rem 

(roentgen equivalent man), where 100 rem = 1 sievert. 

The effects of ionizing radiation from the sun cannot be avoided by flying at 

night.  Although high-energy particles from a severe solar disturbance may initially be 

anisotropic, the spreading effect by the interplanetary and the earth’s magnetic fields 

eventually cause the incoming particle flux to be much more isotropic in nature (7:2).   
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Impact on Air Force Mission 

Certain Air Force missions are extremely susceptible to high altitude radiation 

hazards.  High altitude flyers – especially U2 pilots – fly at altitudes and latitudes where 

the atmosphere and magnetic field do not provide as much protection from the secondary 

particle flux generated by incoming galactic cosmic rays and energetic solar protons.  

Standard U2 operating altitudes are in excess of 80,000 ft (greater than 24 km) (36).  

During solar quiescent periods, a typical radiation dose rate received from galactic 

cosmic radiation at these altitudes is approximately 10 - 17 μSv/hr, or 0.010 - 0.017 

mSv/hr.  However, during a large solar proton event, it’s possible for the radiation dose 

rates to increase to almost 200 μSv/hr, or 0.20 mSv/hr, with the increased rates due 

mostly to energetic solar protons (22).   

Currently, the Air Force Weather Agency (AFWA) produces a product predicting 

radiation dose rates at specific altitudes using a model called CARI-6.  This model is the 

latest in a series of computer programs whose purpose is to calculate the radiation dose 

accrued during an aircraft’s flight.  However, the CARI-6 model only takes into account 

radiation produced by galactic cosmic rays – increased radiation created by a solar 

energetic particle event is not factored into the radiation dose prediction.  The CARI-6 

model does account for solar activity by using an average monthly heliocentric potential.  

The heliocentric potential is an interplanetary magnetic field index.  The more active the 

sun is, the stronger the interplanetary magnetic field, and thus the higher the heliocentric 

potential (11).  This factor allows the CARI-6 model to account for increases and 

decreases in the galactic cosmic radiation incident at the top of the earth’s atmosphere, 
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but it does not account for the occasional flare or CME which accelerates high-energy 

protons in the earth’s direction.   

Research Scope and General Approach 

The goal of this effort is to determine the radiation dose rate at high altitudes due 

to solar energetic protons.  This is a complex problem because of the transient and short-

lived nature of solar proton events, and the complex nature of the earth’s geomagnetic 

shielding.   

Measurements of energetic protons are made by sensors onboard the National 

Oceanic and Atmospheric Administration’s (NOAA) suite of geostationary weather 

satellites, called Geostationary Operational Environment Satellites (GOES).  These 

measurements can be used to estimate the flux of energetic protons into the earth’s 

magnetosphere.  The flux is characterized by an energy spectrum, which can be used to 

estimate dose rates throughout the earth’s atmosphere. 

Along with studying the energy spectrum of incoming solar energetic particles 

and the calculation of dose rates, additional concepts such as rigidity and geomagnetic 

cutoff are described.  These concepts are necessary to predict dose rates for locations 

around the earth. 

Expected Results 

The main focus of this study is the development of an algorithm to determine 

radiation dose rates at given altitudes and positions around the earth.  We will also 

determine the role that the spectral hardness of the incoming proton spectrum plays in 
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determining the amount of radiation dose produced and the role that geomagnetic 

shielding plays in altering the dose rates.  We attempt to determine which types of solar 

proton events are the most dangerous to aircraft and personnel, as well as the typical 

duration of these events.  An evaluation of the current methods for modeling the 

spectrum of solar protons is also provided. 

To accomplish this, Chapter II introduces background concepts necessary to 

understand the problem of radiation dose rates in the atmosphere.  First, the radiation 

environment in the atmosphere is described, along with the effects of radiation, dose rates 

due to radiation, and how these are calculated.  The different sources of radiation are 

discussed in Chapter II, along with the important concepts of rigidity and geomagnetic 

cutoff, which determine whether a particle will arrive at the top of the atmosphere.  Next, 

the production of secondary particles which cause the bulk of the radiation dose is 

described, along with how these particles are transported through the atmosphere.  

Finally, the measurement of high-energy protons originating from the sun will be 

discussed. 

Chapter III covers the methodologies used to come up with a solution to the 

problem.  The method in which a complete particle spectrum is recreated from available 

measurements is discussed first, followed by the concept of spectral hardness.  Then, the 

process by which dose rates in the atmosphere are calculated from the modeled spectrum 

is covered, along with several alternate methods to model the energy spectrum.  The 

concept of geomagnetic cutoff rigidity is incorporated into the solution, and finally, the 

assumptions and known sources of error in these methodologies are discussed. 
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Chapter IV covers the results and analysis.  Two historical events are analyzed 

and compared.  Comparisons between results with and without geomagnetic cutoffs are 

made, along with results from other operational radiation dose rate models currently in 

use.  Analysis of the two historical events will show that solar protons can produce 

significant levels of radiation at high altitudes for brief periods of time immediately 

following large solar flares or coronal mass ejections.  Further, the results will show that 

geomagnetic effects must be taken into account to accurately predict radiation dose rates.  

Finally, Chapter V contains a brief summary and conclusions drawn from the 

research, including the basic finding of this research, that short-lived spikes in radiation 

dose rates at high altitudes can be a significant source of an aircrew’s annual radiation 

exposure.  The paper will conclude with recommendations for future work. 
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II. Background 

Chapter Overview 

This chapter starts with background information regarding the radiation 

environment at high altitudes and how dose rates are measured and calculated.  It then 

progresses to explain the types of radiation that contribute to the overall dose rates.  Next, 

charged particle access to the atmosphere is described followed by a description of how 

the charged particles interact with the atmosphere to produce ionizing radiation.  The 

concept of rigidity is introduced and finally, the process by which the energetic particles 

are measured at geosynchronous orbit is described.   

The Radiation Environment at Aircraft Altitudes 

The term ‘aircraft altitudes’ refers to the range of altitudes at which commercial 

airlines and Department of Defense aircraft fly.  Typical operating altitudes for 

commercial airlines are generally 20,000 feet to 50,000 feet.  Department of Defense and 

especially United States Air Force aircraft may fly much higher, with the operating 

altitude envelope extending upwards to 80,000 feet.  Therefore, for the purposes of this 

study, aircraft altitudes refer to the range from 20,000 to 80,000 ft. 

The radiation environment at these altitudes has a complex nature and is different 

from that on the ground.  Its composition and strength depend on the properties of the 

primary cosmic ray and solar energetic particle flux and vary with altitude.  The cosmic 

ray and solar energetic particle fluxes are modulated by solar activity and influenced by 

the earth’s magnetic field.  Both effects primarily alter the low-energy portion of the 
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spectrum – generally those particles with energies less than about 10 GeV (11).  This low 

energy portion of the spectrum is responsible for most of the secondary particles reaching 

aircraft altitudes because of its large flux.   

Radiation Effects and Dose Rate Calculations 

Ionizing radiation refers to any form of energy that can strip electrons from their 

orbits, break chemical bonds, or contribute to changes in chemical properties.  High-

energy radiation can displace or fragment the nuclei of atoms, producing recoil or 

spallation products leading to a cascading effect of lower-level ionization up to several 

tens of μm around the 1 to 5 nm core of the primary particle's track.  A typical human cell 

dimension is approximately 10 μm in diameter (35). 

High energy cosmic rays affect tissues in the body differently than the lower 

energy radiation that most studies are based on.  This is important because radiation 

effects must be understood in order to understand the risks of exposure to pilots, aircrews, 

and electronic systems flying at high altitudes.  The cumulative effect of exposure to 

ionizing radiation is a function of several factors: the total dose received, the location and 

distribution of the dose, the rate of accumulation of the dose, and the types of radiation 

that produce the dose.  The effects of ionizing radiation fall into two broad categories: 

prompt and delayed. 

The prompt effects include dizziness, headaches, nausea, and may result in severe 

illness or death.  Prompt effects, although extremely rare at any aircraft altitude, can have 

a serious impact on the ability of an aircrew to complete the mission.  Measures must be 

developed and implemented to mitigate these effects. 
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Delayed effects are either nonstochastic (where the severity depends on the dose) 

or stochastic (where the probability of occurrence depends on the dose).  Nonstochastic 

delayed effects include cataracts and nonmalignant skin damage.  Stochastic delayed 

effects include induced cancer and genetic damage.  Although delayed effects would not 

directly impact the immediate mission, the Air Force does have a responsibility to keep 

the overall risk to life as low as reasonably achievable.  Precise risk/benefit assessments 

are up to commanders who need all the necessary information to make the decisions in 

the context of overall mission risk.  It is important to remember that the impact of 

radiation exposure stays with a person for the rest of their life (35).  The Federal Aviation 

Administration’s recommended radiation exposure limit for an aircrew member is a 5-

year average effective dose of 20 mSv per year, with no more than 50 mSv in a single 

year (7).  The Air Force does not have established limits for radiation exposure, although 

such regulations are currently being developed (36).   

As mentioned previously, the radiation impact to aircrews is measured in units of 

sieverts, and is called the effective dose.  The effective dose is the sum of the weighted 

equivalent doses in all the tissues and organs of the body.  It is given by the following 

expression: 

 T TT
E W H=∑ , (1)  

 

where H  is the equivalent dose in tissue T  and W  is the weighting factor for tissue T  

(17).  The weighting factors for specific types of radiation are listed in Table 1 below. 

The equivalent dose is related to the total absorbed dose by a factor that accounts 

for the relative cancer risk of primary and secondary particles.  It is an attempt to 
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characterize different biological effects of different types of radiation using a single scale.  

The equivalent dose depends on the location within the body where the radiation is 

received, due to its self-shielding.  This requires that it be calculated for several locations 

on the body, such as blood-forming organs, skin, eyes, breasts, and other organs and 

tissues (35). 

 
Table 1: Radiation weighting factors for high energy radiation (17). 

 

Radiation Energy 
(GeV) 

Radiation 
Weighting 
Factor 

 
Neutrons 

 
 
 

Protons 
Negative pions 

 
Positive pions 

 
Negative and positive muons 
Negative and positive kaons 

 

 
0.05 – 0.1 
0.1 – 0.5 
0.5 – 10 

>10 
>0.01 
<0.05 
≥0.05 
<0.1 
≥0.1 

10-3 – 10-4 

10-3 – 10-4 

 
5 
4 
3 
2 
2 
5 
2 
1 
2 
1 
2 

 

Conversion of observed particle fluxes to radiation dose rates is not straight-

forward.  The calculations require detailed information about the particle composition 

and energy spectrum, which will be discussed in Chapter III.  The conversion of the 

particle flux to a dose rate requires the use of coefficients to estimate the radiation doses 

on each body part.  These coefficients are calculated by irradiating a simulated body 

using broad parallel beams and fully isotropic radiation incidence.  The beam directions 

are anterior-posterior (AP), posterior-anterior (PA), and right lateral (LAT).  The 

isotropic (ISO) irradiation is calculated using an inward-directed, biased cosine source on 
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a spherical surface.  These models are used later in Chapter III: Methodology to calculate 

coefficients, which are necessary to estimate dose rates (17). 

Galactic Cosmic Radiation 

Galactic cosmic radiation is a term applied to the observed high-energy nuclei 

believed to propagate throughout all space.  The origin of these nuclei is still debated and 

may be either galactic or extra-galactic or both.  Outside the heliosphere, it is thought that 

the galactic cosmic ray flux is isotropic.  Measured anisotropies due to propagation 

effects inside the heliosphere are approximately 1% (5). 

The primary cosmic ray flux refers to those galactic cosmic rays that reach the 

earth’s atmosphere.  The composition of this flux is approximately 83% protons, 13% 

alpha particles, 1% nuclei of atomic number 2Z > , and 3% electrons.  The energy 

spectrum of the primary cosmic ray flux extends from a few hundred MeV to greater than 

1110  GeV (5). 

The differential energy spectra of all high-energy cosmic rays above 

approximately 1 GeV/nucleon can be modeled using a power law in energy of the form 

 ( )F E kE γ−= , (2) 
 

where E  is the kinetic energy per nucleon, and γ  is the spectral index (5).  The spectral 

index is a measure of the hardness of the flux, and is sometimes referred to as the spectral 

hardness.  A flux with a larger number of high energy particles is said to be harder than a 

flux with fewer high energy particles.  Similarly, a flux with a larger number of low 

energy particles is said to be softer than a flux with fewer low energy particles.  This 
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concept is important because two measured fluxes may have the same total number of 

particles, but the harder flux will have a higher total energy content than the softer flux. 

The differential spectrum of the primary cosmic ray flux deviates from the power 

law at energies below about 1 GeV/nucleon.  At these lower energies, the spectrum 

changes with time, mostly as a result of the strength of the interplanetary magnetic field, 

which acts to modulate the galactic cosmic ray flux.  Figure 2 below shows the primary 

cosmic ray differential energy spectrum for helium and hydrogen.  The shaded areas are 

those regions where the spectrum deviates from the power law and is affected by the 

interplanetary magnetic field.  The upper bound is a solar minimum spectrum; the lower 

bound is a solar maximum spectrum (5). 

Galactic cosmic rays are influenced by the solar wind and the interplanetary 

magnetic field when entering the heliosphere.  This influence, which can be detected in 

the cosmic ray intensities recorded at the earth, is called the solar (or heliospheric) 

modulation and, as previously mentioned, depends on the level of solar activity.  During 

periods of high solar activity, the sun’s magnetic complexity greatly increases, usually 

resulting in a stronger interplanetary magnetic field.  A stronger magnetic field means the 

trajectories of energetic particles will be deflected more than usual, which results in a 

decrease in the primary cosmic ray flux.  Thus, cosmic ray intensities measured at the 

earth are inversely related to the sunspot number, and the solar modulation of galactic 

cosmic rays takes on an 11-year cycle similar to the solar cycle (20).   

This solar modulation does not extend across the entire range of cosmic ray 

energies, but rather is concentrated on the lower-energy range, usually below 10 GeV.  
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The trajectories of high energy protons (above 10 GeV) are bent significantly less than 

those of lower energy protons (below 1 GeV).  Therefore, the higher energy cosmic rays 

are less affected by changes in the solar output.  For the lower energy cosmic rays, the 

effect is significant even during solar minimum when the modulation is weaker (11).  At 

100 MeV per nucleon, the particle fluxes differ by a factor of 10 between maximum and 

minimum solar activity conditions, whereas at 4 GeV only a variation of about 20% is 

observed (20).  At energies above 50 GeV, energetic particles are not affected by solar 

modulation (21).  More than 80% of the radiation dose due to galactic cosmic rays at 

aircraft altitudes is caused by cosmic rays with energies below 100 GeV (21).   

Figure 2: Primary cosmic ray differential energy spectra for helium and hydrogen shown on a log 
scale.  The shaded areas are those regions where the spectra deviate from the power law and are 
affected by solar activity.  The upper/lower bound is a solar minimum/maximum spectrum.  The 
hydrogen spectrum has been multiplied by a factor of five so the lower portion of the spectrum 

avoids merging with the top of the helium spectrum (26:6-4). 
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Cosmic ray intensities measured at the earth also undergo short-term variations in 

intensity.  Occasionally, the primary cosmic ray flux will suddenly decrease and then 

begin a slow recovery to normal levels again.  This phenomenon, when correlated to a 

sudden increase in the plasma density and magnetic flux emitted from the sun (such as 

during a CME passage), is called a Forbush decrease.  These short-term variations occur 

throughout the solar cycle, although they are more commonly observed during solar 

maximum.  The magnitude of a Forbush decrease is variable, ranging from a few percent 

to as high as 35%, and depends on the strength of the magnetic disturbance propagating 

through interplanetary space (5).  Two examples of Forbush decreases are shown in 

Figure 3 below.  The first decrease occurred on 22 July, and is marked by a sudden 

decrease in the neutron monitor count rate by nearly 4%.  The second decrease is much 

more significant, occurring early on 27 July, and marked by a decrease in the neutron 

monitor count rate by 10%.  A characteristic rise in the count rate is seen soon after the 

decrease, and the count rates return to pre-disturbance levels after about 13 days. 

Figure 3: Two cosmic ray Forbush decreases observed at the Oulu neutron monitor in Finland over a 
period of three weeks during July and August of 2004.  The first decrease occurred on 22 July; the 

second decrease occurred on 27 July.  Count rates returned to normal levels by 8 August (2). 
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Solar Energetic Particles 

Occasionally, the sun will eject a large amount of material, either through a solar 

flare or a CME.  This material generally consists mostly of high-energy protons.  If the 

mass of material is earth-directed, a significant increase in the flux of energetic particles 

may be observed.  A solar proton event is defined as a sudden burst of high-energy 

particles from the sun, which can last up to several days.  Operationally, the flux of 

particles with energies greater than 10 MeV must exceed 10 particles/cm2/sec/str to 

qualify as a solar proton event; however, the types of solar proton events most 

threatening to human life occur less than once per decade.  This makes them especially 

difficult to study or to predict (18). 

Ground-based neutron monitors, which provide indirect measurements of the 

cosmic ray flux, occasionally detect short increases in cosmic ray intensities associated 

with increased solar activity (usually solar flares).  After the initial increase, cosmic ray 

intensities return to normal levels within tens of minutes to days.  Some of these increases 

in cosmic ray intensities are called ground level events (GLE).  A GLE is defined as a 

sharp increase in the ground level neutron monitor count rate to at least 10% above the 

background, associated with solar protons of energies greater than 500 MeV (31).  As of 

January 2006, only 69 GLEs have been observed since the first GLE was recorded in 

February of 1956 (3).   

The GLE which occurred on 14 July 2000 is shown in Figure 4, as measured by 

the Oulu neutron monitor in Finland.  A Forbush decrease is apparent on 13 July as the 

neutron monitor count rate drops sharply.  The GLE is represented by the large spike in 
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the count rate on 14 July.  A second Forbush decrease occurred on 15 July, coincident 

with the arrival of a fast-moving CME.  A characteristic slow recovery in the count rate 

occurred over the next 15 days.  The neutron monitor recorded the increased count rate 

from the GLE on the 14th despite the increase in magnetic activity which began a day 

prior.   

Compared to galactic cosmic rays, solar energetic particles have relatively low 

energies, generally below 1 GeV, and only rarely are particles with energies greater than 

10 GeV observed (11:37).  The lower energies of solar energetic particles mean they are 

often not observed at low latitudes because of a phenomenon known as geomagnetic 

cutoff, which is discussed in Chapter II: Geomagnetic Cutoff. 

Figure 4: Neutron monitor count rate from the Oulu neutron monitor in Finland.  A GLE was 
recorded on 14 July 2000, indicated by the sharp spike in the neutron monitor count rate (11:129).   

 

Just as in the case of galactic comic rays, the spectrum of solar protons can be 

reasonably represented by a power law in kinetic energy, E, (35) 

 ( )F E kE γ−= . (3) 
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Even during a solar proton event, the cosmic ray spectrum above a few hundred 

MeV is composed almost entirely of galactic cosmic rays.  However, solar energetic 

particles dominate the bulk of the cosmic ray spectrum below about 1 GeV during one of 

these events.  This can be seen in Figure 5 below, which shows the relative importance of 

the galactic cosmic ray and solar energetic particle fluxes at different energies for a 

hypothetical solar proton event.  At high energies (above a few GeV/nucleon) galactic 

cosmic rays are the dominant part of the spectrum.  At low energies (below 1 GeV) solar 

energetic particles begin to dominate the overall spectrum (11). 

 

Figure 5: The galactic cosmic ray (GCR) and solar energetic particle, or solar cosmic ray (SCR) 
energy spectra.  Solid lines are the galactic cosmic ray spectra for solar maximum and solar 

minimum.  The dashed line shows the solar cosmic ray contribution to the overall spectrum (11). 
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An important question to ask is, "How big does a solar proton event need to be in 

order to significantly increase radiation levels at flight altitudes?"  Or more appropriately 

(as will be shown later), “What does the spectrum of a solar proton event look like that 

increases radiation levels at flight altitudes?”  The radiation exposure experienced by an 

aircrew will depend on both the size of the flux throughout the event, as well as the 

spectral hardness of the event (35).  The flux can be measured directly by counting the 

number of particles that reach the earth’s magnetic field.  However, to compute the 

spectral hardness, the spectrum must be modeled using available information about the 

number of particles and their respective energies.  An important concept in this 

discussion is rigidity.   

Rigidity 

Since both cosmic rays and solar energetic particles are charged particles, they are 

subject to the Lorentz force, and experience a V B×  drift that continuously alters their 

trajectory.  Energetic protons, whether solar or extra-solar in nature, must pass through 

the earth’s magnetosphere in order to reach the atmosphere.  A charged particle in a 

magnetic field will follow a spiral path with a radius of curvature br : 

 0
b

m vr
Be

γ ⊥= , (4) 

 

where γ  is the relativistic parameter, 0m  is the rest mass for the particle, cosv v θ⊥ = , or 

the velocity perpendicular to the magnetic field, B  is the magnetic field strength, and e  

is the charge carried by the particle.  The relativistic parameter γ  is defined as 
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and the particle’s perpendicular momentum is defined as 

 0P m vγ⊥ ⊥= . (6) 

 

Thus, the radius of curvature, also known as the gyroradius, is directly proportional to the 

momentum and inversely proportional to the magnetic field strength.  However, the 

problem is made more complicated because the particle energies are typically high 

enough that the magnetic field changes significantly over one gyration.  Therefore the 

simplification of assuming a uniform magnetic field cannot be made.  Particles traveling 

along magnetic field lines are affected less because the perpendicular velocity is very 

small. 

Given the dipole nature of the earth’s magnetic field, charged particles 

approaching the earth in the ecliptic plane encounter magnetic field lines perpendicular to 

their trajectory.  However, because particles traveling along magnetic field lines 

experience little to no deviation in their trajectories, the polar regions are the most 

accessible.  To reach the equatorial regions, a proton cannot follow field lines, but must 

instead cross field-lines all the way down to the atmosphere.  This is possible if the 

proton has sufficient energy (> 15 GeV), but so few particles have the requisite energy 

that the equatorial region is effectively forbidden to typical solar protons (26). 

The magnetic rigidity, R , of a particle is a measure of its resistance to this effect.  

Rigidity (with units of momentum per unit charge) is a canonical variable and is 
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advantageous to use because all particles with the same value of R  will follow the same 

path in a given magnetic field. 

The radius of gyration in a given magnetic field depends on the momentum per 

unit charge ( / )P e , so it is convenient to discuss particle orbits in terms of rigidity: 

    PcR
ze

= ,     (7) 

where P  is the momentum, c  is the speed of light, z  is the atomic number, and e  is the 

electronic charge (positive for protons).  The more energetic a particle is, the larger its 

gyroradius, and the higher its rigidity will be.  Since P c⋅  is typically expressed in 

electron volts and ze  represents the number of electronic charge units, rigidity takes on 

units of volts (V).  Convenient units are MV (106 V), and GV (109 V). 

It is common to express energy in terms of rigidity and vice versa, therefore a 

conversion between the two units is necessary.  The relativistic kinetic energy expressed 

in terms of kinetic energy per nucleon is 

 ( ) 01A AE Eγ= − , (8) 
 

where AE  is the kinetic energy per nucleon, and 0 AE  is the rest mass energy per nucleon.  

The rest mass energy of a proton is 2
0m c , which is equal to 938.232 MeV.  Conversion 

between kinetic energy per nucleon and rigidity is accomplished by using the following 

equation: 

 ( )
1

2 2
01 A

zR E
A

γ= − , (9) 
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where z  is the atomic number and A  is the atomic charge.  The relativistic parameter γ  

can be computed from either the cosmic ray kinetic energy 

 0

0

A A
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E E
E

γ +
= , (10) 

 

or the cosmic ray rigidity (5) 
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. (11) 

 

It is convenient to use equations in terms of rigidity.  A table listing selected 

rigidity to energy conversions is contained in Appendix A for reference. 

Geomagnetic Cutoff 

The trajectory of a proton in the earth’s geomagnetic field can be very 

complicated even if a simple dipole field is assumed (see Figure 8).  The trajectory can be 

simplified by defining ‘allowed’ and ‘forbidden’ regions which may or may not be 

reached by a charged particle approaching the earth from infinity.  To reach a certain 

magnetic latitude, cλ , in a dipole magnetic field, the rigidity of the particle must exceed a 

certain cutoff rigidity, cR .  Particles of rigidity cR  reach latitudes greater than or equal 

to cλ .  Equivalently, at latitude cλ  only particles with rigidity equal to and greater than cR  

would be expected to penetrate the magnetic field (9).  For a given location on the Earth, 

the geomagnetic cutoff is the lowest rigidity that a particle can have and still traverse the 

magnetic field to be measured.  All particles with lower rigidity will be deflected by the 
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magnetic field.  Thus, geomagnetic cutoff rigidities provide a quantitative measurement 

of the shielding provided by the earth’s magnetic field.   

Geomagnetic field lines that extend out from the polar regions connect with the 

interplanetary magnetic field and present little or no barrier to incoming energetic 

particles.  However, at lower latitudes the Earth's magnetic field acts as a filter that 

removes lower rigidity particles from the solar energetic particle or cosmic ray flux.  The 

cutoff rigidity increases towards the geomagnetic equator. 

Characterizing the earth’s geomagnetic field can be difficult because it is affected 

by currents that exist within the magnetosphere.  The distortion of the magnetic field 

because of these current systems causes a change in the geomagnetic cutoffs as well.  

Because magnetospheric currents have a significant effect on the cutoffs and because 

these external currents change significantly during a geomagnetic storm, it is necessary to 

calculate cutoffs globally for different levels of geomagnetic activity (15).  Evidence of 

this dynamic cutoff phenomenon was observed during the large solar energetic particle 

event of 20 October 1989, where the cutoff latitude for a 100 MeV proton was observed 

to move 15 degrees equatorward during the geomagnetic disturbance (12). 

Geomagnetic cutoffs are traditionally calculated by tracing test trajectories in a 

model magnetic field.  Particle trajectories that are allowed to escape the Earth represent 

trajectories that would reach the earth from outside the magnetosphere, and are called 

allowed trajectories.  Trajectories that do not escape the Earth, and instead are bent back 

around and impact the Earth, are called forbidden trajectories.  The exact trajectory 

depends on the direction of arrival of the incoming particle in space and hence the cutoffs 
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are a function of direction at a specified point near the Earth.  The usual method for 

determining cutoffs is to compute trajectories of particles from a given point near the 

earth at successively lower energies until the forbidden trajectories are found.   

Unfortunately, trajectories often exhibit chaotic behavior, especially near the 

cutoff, and hence the cutoffs are not always sharp.  Instead, they typically consist of 

bands of allowed and forbidden regions.  The upper cutoff rigidity UR  is the highest 

detected allowed/forbidden transition – all particles above this rigidity are allowed.  The 

lower cutoff rigidity LR  is the lowest allowed/forbidden transition – all particles below 

this rigidity are forbidden.  The region in between is called the cosmic ray penumbra and 

is characterized by a complicated number of allowed and forbidden trajectories.  No 

simple method of organizing the trajectories within the penumbra exists as of yet (5:6-9).  

Attempts have been made to come up with a number called the effective cutoff rigidity 

CR  to characterize this region.  The effective cutoff rigidity is a linear average of the 

allowed bands within the penumbra that attempts to account for the transparency of the 

penumbra (29:96).  Figure 6 shows the geomagnetic cutoffs and the structure of the 

penumbra for three locations in North America.  The white bands are allowed 

trajectories; the black bands are forbidden trajectories.  In the example below, the lower 

cutoff at Newark is 1.90 GV, while the upper cutoff is 2.30 GV.  The penumbra is located 

between these two values, and the chaotic behavior of the cutoff inside the penumbra is 

evident.  Note also that the penumbra varies in size and complexity between locations. 

An illustration of the width of the cosmic ray cutoff penumbra as a function of 

latitude and rigidity is shown in Figure 7.  The upper, lower, and effective cutoffs were 
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computed assuming a vertically incident particle.  The width of the penumbra is 

illustrated by the shaded region of the plot.  The solid line denotes the effective cutoff 

rigidity.  This shows the complexity of the penumbral region and the computed effective 

cutoff rigidity.  The penumbra increases in size as rigidity increases or latitude decreases.  

Poleward of 60 degrees latitude, the penumbra nearly vanishes (see Figure 20). 

 

 
Figure 6: Cosmic ray cutoffs and the cosmic ray penumbra for vertically incident charged particles.  

White bands depict allowed rigidities, black bands depict forbidden rigidities.  The penumbra 
extends from the white band at the lowest rigidity to the black band at the highest rigidity (27). 

 

The main reason why it is so difficult to quantify the cutoff rigidity is because the 

equations of charged particle motion within a magnetic field do not have any solution in 

closed form (28:6-10).  As a result, the global calculation of geomagnetic cutoff rigidities 

is computationally intensive and if performed in the traditional way, may not meet time 

constraints associated with real-time operations.  This challenge can be met by using a 

number of approximations and by using specialized cutoff search strategies.  These 

techniques will be discussed later in Chapter III. 
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Figure 7: Illustration of the width (shaded area) of the cosmic ray vertical cutoff penumbra as a 
function of latitude along the 260oE meridian.  The solid line indicates the effective geomagnetic 

cutoff rigidity along this meridian (26:6-9). 
 
 

Particle Access to the Atmosphere 

Early cosmic ray measurements showed that the cosmic ray intensity was ordered 

by magnetic latitude.  Störmer developed the early theory of particle trajectories in the 

magnetosphere.  Unfortunately, as mentioned earlier, the resulting equations to describe 

these motions are complicated and have no closed form solution (16). 

A special case solution exists in a dipole magnetic field which describes the 

geomagnetic cutoff rigidity.  If the earth’s magnetic field is approximated as a dipole 

magnetic field, the geomagnetic cutoff rigidity can be calculated using the following 

equation: 
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where cR  is the geomagnetic cutoff rigidity in MV, M is the earth’s dipole moment, λ  is 

the geomagnetic latitude, ε  is the zenith angle (where the zenith direction is a radial from 

the position of the dipole center), and φ  is the azimuth angle measured from magnetic 

north (28:6-11).  This equation can be simplified by normalizing to the earth’s dipole 

moment M and expressing the distance from the dipole center r  in earth radii, such that 

the constant terms evaluate to 59.6 (28:6-12).  Further, if a vertical (radial direction) 

cutoff is assumed, the zenith angle goes to zero and Eq. (12) reduces to the following 

equation for the vertical cutoff rigidity (28:6-12):  
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This greatly simplifies the process for estimating cutoff rigidities.  The two assumptions 

made are that incoming charged particles are vertically incident and that the earth’s 

magnetic field can be approximated with a dipole magnetic field. 

In Figure 8 below, some numerical trajectory calculations made for protons of 

different rigidities are illustrated.  All of the trajectories in this figure were initiated in the 

vertical direction from the same location.  Rigidities decrease for each successive 

trajectory, beginning with the trajectory labeled 1.  The trajectories labeled 1, 2, and 3 

show increasing geomagnetic bending before escaping into space.  The trajectory labeled 

4 develops intermediate loops before escaping.  The lower rigidity trajectory labeled 5 

develops complex loops near the earth before it escapes.  As the charged particle rigidity 
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is further reduced, there are a series of trajectories that intersect the earth (i.e. re-entrant 

trajectories).  In a pure dipole field that does not have a physical barrier embedded in the 

field, these trajectories may be allowed, illustrating one of the differences between 

Störmer theory and trajectory calculations in the earth’s magnetic field.  Finally, the still 

lower rigidity trajectory labeled 15 escapes after a series of complex loops near the earth.  

These series of allowed and forbidden bands of particle access are the cosmic ray 

penumbra.  They also illustrate an often-ignored fact that cosmic ray geomagnetic cutoffs 

are not sharp (except for special cases in the equatorial regions) (27). 

 

 
Figure 8: Illustration of proton trajectories of different rigidities in the geomagnetic field.  The paths 

are very complicated even if a simple dipole field is assumed.  Trajectories near the cutoff rigidity 
exhibit complex behavior.  The rigidity of trajectory 1 is the greatest, with rigidities decreasing for 

each subsequent trajectory shown (27:5). 

 

A plot of the Störmer cutoff latitude against energy for both protons and electrons 

is shown in Figure 9.  Based on the figure, it is evident that protons require energies 
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greater than 1 GeV to reach a dipole latitude of 50 degrees; electrons require even more 

energy to reach the same latitude.  This is because the mass of an electron is much 

smaller compared to the mass of a proton, and the gyroradius is proportional to the mass, 

as in Eq. (4).  Equivalently, the rigidity of an electron is much smaller than that of a 

proton. 

Figure 9: Plot of the Störmer cut-off latitude vs. energy (log scale) for protons and electrons.  A 
particle’s cutoff latitude decreases as its energy increases.  Electrons require greater energies than 

protons to reach the same latitude because electrons have much smaller gyroradii (9:357). 

 

The Störmer values are not without errors since they assume a dipole magnetic 

field with no disturbances.  The quiet magnetic field is not strictly dipolar, and currents 

within the magnetosphere along with distortions of the geomagnetic field by the solar 

wind can both reduce the cutoff latitude.  Figure 10 shows the difference in cutoff latitude 

between the dipole field and a more realistic field.  The cutoff latitude may be reduced 

further if a magnetic storm, which enhances the ring current and moves the magnetopause 

inward, occurs at the same time.  The induced current in the magnetosphere affects the 
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geomagnetic field in a complex manner, changing the distribution of the cutoff rigidities 

and usually reducing them (15). 

 

Figure 10: Differences between a dipole magnetic field and a more realistic geomagnetic field.  
Geomagnetic cutoff latitudes are reduced for the more realistic magnetic field at energies less than 4 

GeV.  The model field takes into account distortions caused by the solar wind (9:358). 

 

Production of Secondary Particles 

When an energetic proton crosses the earth’s magnetic field and enters the 

atmosphere, it loses energy in collisions with the neutral molecules and leaves an ionized 

trail.  Substantial ionization can occur down to 50 km in some cases.  Solar protons 

therefore ionize a region below the normal ionosphere, and can enhance radiation levels 

at altitudes where aircraft commonly operate.   

The mean free path of energetic protons in the atmosphere is approximately 

100 g/cm2 (11:133).  This is determined mainly by collisions between protons and the 

nuclei of atmospheric atoms.  However, an incident proton will have to traverse 
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approximately 1033 g/cm2 of atmosphere to reach the earth’s surface.  But after 

traversing only 58 g/cm2 of air mass, the primary proton flux is reduced to about half of 

the initial flux.  Thus it is unlikely that a substantial number of energetic protons will 

penetrate to the earth’s surface without undergoing a number of collisions.   

The successive collisions between the incident particles and the atmospheric 

nuclei, and their respective interactions are called an atmospheric cascade.  The cascade 

consists of three main components: the “soft” or electromagnetic component, which is 

made up of electrons, positrons, and photons; the “hard” or muon component, made up of 

muons; and the nucleonic component, which consists mostly of suprathermal neutrons 

(11).  A typical atmospheric cascade is depicted below in Figure 11.  

Figure 11: Schematic diagram of an atmospheric cascade (29:135). 
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The collisions between primary cosmic rays and air nuclei produce high-energy 

secondary cosmic rays as well as neutrons.  We are able to measure the flux of neutrons 

produced by these cosmic ray showers at the surface of the earth using neutron detectors.  

As the protons penetrate deeper into the atmosphere, the atmospheric density increases, 

causing the frequency of collisions and the number of secondary particles produced to 

increase.  The number of secondary particles produced becomes significant at about 55 

km, with the maximum in their intensity occurring at approximately 20 km.  The intensity 

of the secondaries then decreases to the surface of the earth as particles lose energy 

through additional collisions until the majority either decay or are absorbed (5). 

Particle Transport and Monte Carlo Simulations 

The intensity and composition of the cosmic rays observed within the atmosphere 

depend on the quantity of the absorbing material traversed before observation, in addition 

to the cutoff rigidity of the observation point.  Atmospheric conditions, especially 

barometric pressure, also have an appreciable effect on the measured intensity.  Thus 

cosmic ray intensities are usually reported in terms of atmospheric depth (mass of air per 

unit area above the observation point) or of barometric pressure at the observation point 

rather than the altitude of observation.  The ionization rate measured within the 

atmosphere depends on the amount of matter above the point of observation and on its 

distribution with height.  The altitude or atmospheric depth at which the energetic 

particles are measured makes a significant difference in the shape and energy range of the 

spectrum.  Once the protons begin to encounter the atmosphere, fewer and fewer of the 
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primary proton flux will be available for measurement.  Thus it is best to measure the 

proton flux before it encounters the atmosphere. 

In the past, theoretical predictions of atmospheric particle fluences have been 

subject to large uncertainties.  The primary spectrum was known only within a factor of 

two and the demand in computing power for three-dimensional Monte Carlo simulations 

made systematic studies of all aspects of the radiation field almost impossible.  Most 

studies were based on two-dimensional calculations which cannot predict isotropically 

distributed quantities.  Recently however, the situation has greatly improved as detailed 

experimental information on the primary cosmic ray spectra is now available and 

powerful CPUs have become relatively inexpensive.  In addition, results of systematic 

experimental studies performed aboard aircraft, balloons, and on the ground exist with 

which the model predictions can be compared. 

The work used in this study was performed using Monte Carlo simulations.  

Specifically, a Monte Carlo code called MCNPX 2.4.0 was used.  MCNPX, which stands 

for Monte Carlo N-Particle eXtended, is a general-purpose Monte Carlo radiation 

transport code for modeling the interaction of radiation.  Results from these simulations 

were used to generate fluence to effective dose rate conversion factors which will be 

discussed later in Chapter III: Effective Dose Calculation. 

Measurement of Solar Energetic Particles 

Only a few satellites carry equipment designed to measure the flux of energetic 

particles in the near-earth environment.  For the calculations in this paper, the data 

presented is from the National Oceanic and Atmospheric Administration’s (NOAA) 
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Geostationary Operational Environmental Satellites (GOES), unless otherwise noted.  

NOAA has several GOES spacecraft in operation.  From 1995 through 2003, the primary 

sensor for measuring energetic particles was on the GOES-8 spacecraft, and from 2003 

through 2005, the main sensor was on the GOES-11 spacecraft.  GOES-10 was used as 

the primary sensor briefly in April-May 2003, however intermittent sensor problems 

prevented it from remaining as the primary sensor.  A sensor is also present on the 

GOES-12 spacecraft (33).  

Prior to GOES-8, the GOES series spacecraft were spin-stabilized.  Particle 

detectors used on these satellites were thus omni-directional because they were able to 

observe particles coming from almost any direction.  However, GOES-8 and subsequent 

satellites are three-axis stabilized which means the energetic particle sensor looks only in 

one direction.  It has been shown however that this does not significantly compromise the 

detector’s ability to recognize event onsets, and further that the fluxes of particles 

observed by GOES spacecraft at different longitudes differed by less than 20% at 

relativistic energies, and the differences decreased with decreasing energy (24:10).  

Further, no significant evidence of anisotropy effects was found between the different 

locations of the sensors.  Therefore, dose rate estimates calculated using the procedure 

outlined in Chapter III can be expected to contain uncertainties of approximately 10% 

between the different operational GOES spacecraft (24:10). 

The NOAA Space Environment Center (SEC) monitors the near-earth space 

environment using a set of instruments onboard the GOES spacecraft called the Space 

Environment Monitor (SEM).  The instruments used for the purposes of this paper are the 
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Energetic Particle Sensor (EPS), which measures low energy protons from 0.8 to 

500 MeV, and the High Energy Proton and Alpha Detector (HEPAD), which measures 

protons with energies above 330 MeV and alpha particles with energies above 

640 MeV/nucleon (34).   

The EPS measurement of protons is divided into seven differential channels, 

labeled P1 – P7.  Channels P1 – P3 are obtained from small angle solid-state telescopes, 

while channels P4 – P7 are obtained from several large aperture dome detectors.  The 

HEPAD measurement of protons is divided into 4 channels, labeled P8 – P11.  These 

channels are obtained from a solid-state/Cerenkov telescope (24).  The characteristics and 

individual responses for each channel will be discussed later in Chapter III: Correction 

Factors for GOES Energetic Particle Measurements.  GOES energetic particle data can be 

obtained from the NOAA National Geophysical Data Center (NGDC) (13). 

The CARI-6 Radiation Dose Predictive Code 

CARI-6 is a computer code designed to calculate the cumulative radiation dose 

received during a flight.  The latest version incorporates the 1995 International 

Geomagnetic Reference Field (IGRF) as well as a re-analysis of the primary cosmic ray 

spectrum.  The program is based on a computer code called LUIN, which is a high-

energy transport code based on the solution to the Boltzmann equation (16). 

Although the code does take into account some form of geomagnetic cutoff 

rigidity and a measure of the solar output, the values are calculated using a monthly mean 

heliocentric potential, and thus do not accurately account for large, short-lived solar 

disturbances, such as solar flares or CMEs.  The CARI-6 code will generally over-predict 
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dose rates during Forbush decreases when the cosmic ray flux is suppressed because of 

magnetic activity.  The code also does not account for large changes in geomagnetic 

cutoff rigidity during geomagnetically active times.  Outside of these events, the CARI-6 

code provides excellent agreement between theory and measurement (16).  However, 

there is still a need for a method to compute dose rates due to solar energetic particles, for 

those rare events when solar activity greatly enhances radiation dose rates. 
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III. Methodology 

Chapter Overview 

This chapter covers the methods by which the spectrum of incoming solar 

energetic particles will be modeled as well as the way in which dose rates at given 

altitudes and locations will be computed.  First, energetic proton measurements are 

obtained from GOES-11 spacecraft orbiting the Earth.  Next, the spectrum of the 

incoming solar proton flux is modeled using a power law in rigidity.  Then, making use 

of transport codes and radiation exposure coefficients, effective dose rates are calculated.  

Geomagnetic cutoff effects will be introduced and applied to the dose rate calculation.  

Lastly, assumptions and known sources of error will be discussed. 

The method for determining effective dose rates outlined below was developed by 

Copeland et al. (1).  Any deviations from their original methods will be noted. 

Correction Factors for GOES Energetic Particle Measurements 

In calculating the dose rate due to solar energetic particles, the energy spectrum of 

the incoming particles must first be modeled.  This requires specific information about 

the flux and energy of particles incident in the earth’s upper atmosphere, which is 

available from the GOES Space Environment Monitor.  Unfortunately, the measurements 

are not reported as raw count rates.  Instead, several correction factors are automatically 

applied to convert the satellite count rates to fluxes.  However, these numbers are 

calibrated for the older GOES instruments (GOES-7 and previous).  The newer satellites 

(GOES-8 and later), require different correction factors.   
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The GOES Space Environment Monitor discussed previously in Chapter II 

records the flux of energetic particles in 11 different channels.  The first seven channels 

are used by the EPS instrument and the remaining four channels are used by the HEPAD 

instrument.  Table 2 below shows the energy ranges for each of these channels. 

 
Table 2: Rigidity (energy) ranges for GOES Space Environment Monitor instruments.  For the 

calculations in this study, channels P4 – P7 and P10 – P11 are used (24:3). 
 

Channel 

 
Rigidity (Energy) Range 

Units – MV (MeV) 
 

P1 36.3 – 88.9 (.7 – 4.2) 
P2 88.9 – 128.1 (4.2 – 8.7) 
P3 128.1 – 165.6 (8.7 – 14.5) 
P4 168.5 – 276.9 (15 – 40) 
P5 269.8 – 400.8 (38 – 82) 
P6 405.9 – 644.6 (84 – 200) 
P7 467.6 – 1581.0 (110 – 900) 
P8 853.5 – 982.3 (330 – 420) 
P9 982.3 – 1103.4 (420 – 510) 
P10 1103.4 – 1343.2 (510 – 700) 
P11 > 1343.2 (> 700) 

 

Each channel is sensitive to a range of energies and has a characteristic energy 

which will be used to derive a flux spectrum for the particles measured.  For the purposes 

of this study, channels P4 – P7 will be used to cover rigidities of 137 to 1225 MV (10 to 

604 MeV), and channels P10 – P11 will be used to cover rigidities 1225 to 32545 MV 

(604 to 31620 MeV).  Channels P4 – P10 are in terms of differential flux, with units of 

protons/cm2/sec/str/MeV.  However, channel P11 is in terms of integral flux, with units 

of protons/cm2/sec/str.  The data from these channels can be used to construct a 

piecewise-continuous approximation of the true solar proton spectrum. 
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In their procedure for modeling the spectrum of incoming solar energetic 

particles, Copeland et al. (1) use the numbers in Table 3 to correct the data from the 

GOES Space Environment Monitor (1:2).  These correction factors may be applied to 

data from GOES-8 and newer spacecraft (24:6). 

 
Table 3: Conversion factors and characteristic rigidities for use with GOES-8 and newer  

spacecraft (1). 
 

Channel 
Conversion 
Factor ( k )a 

Conversion 
Factor ( k ′ )b 

Characteristic 
Rigidity (MV) 

P4      4.64     22.25    225.1 

P5     15.5     43.04    338.2 

P6     90.    252.8    563.9 

P7    300.   1210.    950. 

P10    162.    175.6   1225. 

P11   1565.   1103.   1700. 
 

a k : counts/(particles/cm2/str/MeV)  
b k ′ : counts/(particles/cm2/str/MV)  

 

The first step in modeling the spectrum of incoming protons is to apply several 

correction factors to the data from the GOES instruments to convert the incorrect fluxes 

to raw count rates and then to the correct fluxes.  The correction factors are listed by 

Panametrics (24).  To convert the incorrect fluxes back to the raw instrument count rates, 

the flux in each channel must be multiplied by the appropriate conversion factor listed in 

Table 3.  Next, the background galactic cosmic ray count rate must be subtracted from 

the total count rate since only the solar proton count rate is of interest.  This is 

accomplished by averaging the count rate over the previous 12 hours of quiet-time 

measurements (outside of any significant solar activity) in each channel and subtracting 
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from the total count rate in each channel (1:1).  This ensures the spectrum being modeled 

is that of solar protons alone, with no contribution from galactic cosmic rays. 

The instrument count rate due to solar protons must be converted to a differential 

flux.  This is accomplished by dividing the count rate in each channel by the appropriate 

conversion factor ( k ′ ) listed in Table 3.  This returns a differential flux ( )f R  with units 

of particles/cm2/str/MV.  With the differential flux in each rigidity channel, a preliminary 

spectral hardness index can be calculated.  The spectral hardness of the incoming protons 

is a measure of how much energy the particles have, and is a key factor in modeling the 

spectrum.  The higher the flux of high-energy particles, the harder the spectrum will be. 

Characterization of the Energy Spectrum / Spectral Hardness 

With the correct differential fluxes in each of the channels, a spectral hardness, γ , 

and intensity, α , can be calculated for each channel which allows an approximation of 

the entire energy spectrum to be constructed.  Recall from Chapter II that the energy 

spectrum of solar protons can be represented by a power law of the form: 

 ( )f R R γα −= . (14) 
 

To fit the solar proton flux to a power law, the intensity, α , and the spectral hardness 

index, γ , must be determined. 

A preliminary spectral hardness index ( ,Pi Pjγ ) is computed between adjacent 

channels.  Thus the computation of 4, 5P Pγ  uses channels P4 and P5.  To calculate the 

preliminary spectral hardness, the following equation is used: 
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( ) ( )

[ ],

ln ln

ln ln
Pi Pj

Pi Pj
Pj Pi

f R f R

R R
γ

⎡ ⎤⎡ ⎤ −⎣ ⎦ ⎣ ⎦=
⎡ ⎤ −⎣ ⎦

, (15) 

 

where ( ) 4P
f R  through ( ) 11P

f R  are the differential proton fluxes derived in the previous 

section, and 4PR  through 11PR  are the characteristic rigidities for each channel listed in 

Table 3 (1).   

This preliminary spectral hardness is used to correct the differential flux of solar 

particles according to the processing procedure for the EPS and HEPAD sensors (24:13, 

15).  This process is outlined in greater detail by Copeland et al. (1:3).  In performing this 

correction, the spectral response is being weighted towards the higher energies.  For 

further information about this correction, see the technical document concerning data 

processing and the analysis of GOES particle data prepared by Sauer (24:11).   

Once the differential flux has been corrected, the spectral hardness ( ,Pi Pjγ ) must 

be recalculated using Eq. (15) and the corrected fluxes.  With the spectral hardness 

computed, the intensity α  can be computed for each channel using  

 
( )corrected

f R
R γα −= , (16) 

 

where ( )corrected
f R  is the corrected differential flux, and R  is the characteristic rigidity 

for the respective channel listed in Table 3 (1).   

Channel P11 needs further manipulation before a piecewise-continuous 

description of the spectrum can be constructed.  This channel is unique in that it 

represents an integral flux.  The process has proceeded up until now treating channel P11 
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in the same way as the other channels in order to assist with the computation of spectral 

hardness values.  However, the channel P11 count rate must be converted to a corrected 

integral flux.  To do this, the count rate must be divided by 0.73 cm2·str, which is the 

geometric factor listed by the instrument’s manufacturer for channel P11 (24:6).   

To compute the spectral hardness for channel P11, Eq. (17) is used to find the 

value of γ  that best describes the corrected integral flux ( 11PF ) derived for channel P11.  

To do this, γ  is set equal to 10, 11P Pγ  and subsequently decreased in steps of 0.000001 until 

the following equation is satisfied (1:3): 

 
32545

11 1343

MV

P MV
F R dRγα −≤ ∫ . (17) 

 

Here, 11PF  is the corrected integral flux for channel P11, α  is the intensity and is set to 

the same value as computed for channel P10; R  is the characteristic rigidity for channel 

P11 listed in Table 3. 

In the case that 11PF  is greater than the integral in Eq. (17), the following equation 

is used: 

 
1344

11 1343

MV

P MV
F R dRγα −≤ ∫ , (18) 

 

and the upper limit of integration is increased in steps of 1 MV until the inequality is 

satisfied (1:3). 

Once values for intensity, α , and spectral hardness, γ , have been calculated for 

each rigidity channel, they are used in conjunction with Eq. (3) to create a piece-wise 
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spectrum spanning the full range of rigidities.  Together, the reconstruction describes the 

solar proton spectrum from 137 to 32,545 MV (10 to 31,620 MeV) (1:3).   

This procedure was carried out for the solar proton event and associated ground 

level event (GLE) of 20 January 2005 to produce Figure 12 below.  The spectrum was 

modeled at three times – 0655 UT, 10 minutes later (0705 UT), and 2 hours later 

(0855 UT).  Since the process removes the background galactic cosmic ray flux prior to 

modeling the spectrum, the spectra shown below describe only the solar proton flux. 

Figure 12: Evolution of the solar proton spectrum for the 20 January 2005 solar proton event and 
associated GLE.  The background galactic cosmic ray flux has been removed.  Peak dose rates 

associated with this event occurred at 0655 UT. 

 

At 0655 UT, the spectrum was extremely hard, indicating a large flux of high 

energy protons.  In fact, solar protons with rigidities of nearly 22 GV (21 GeV) were 

measured.  This event was rare in that it produced the largest GLE observed in 50 years. 
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After 0655 UT, the spectrum softened, with fluxes of lower energy particles 

increasing and fluxes of higher energy particles decreasing.  The discontinuous nature of 

the plot is an unavoidable byproduct of the method used to model the spectrum.  More 

discussion on this problem will follow in Chapter IV. 

Once the rigidity spectrum of the solar proton flux has been modeled, it can be 

used it to calculate the effective dose rate expected at a specified altitude.   

Effective Dose Calculation 

To calculate the effective dose rate at a specific altitude, the method for modeling 

the solar proton spectrum developed by Copeland et al. (1) and described in the previous 

section is used, along with the data contained in Table 4 below.  This table was generated 

using the multipurpose particle transport code MCNPX 2.4.0, and shows the effective 

dose rate per unit flux of primary solar protons, as related to incident rigidity and energy 

at selected altitudes above mean sea level.  To run the MCNPX 2.4.0 code and generate 

the effective dose rate per unit flux, the earth, its atmosphere, and the near-earth 

environment had to be modeled and input into the simulation (1:2).  The MCNPX 

simulations were performed by Copeland et al. (1:2). 

The secondary particle flux was generated by the MCNPX code by assuming an 

incident proton flux at the top of the atmosphere, which was assumed to be at an altitude 

of 100 km.  Further, since the GOES energetic particle data does not contain any 

directional information (because the satellites are three-axis stabilized), the proton flux 

was assumed to be isotropic.  This may not be a good assumption during the early stages 

of a solar proton event, where it has been shown that the solar energetic particle flux from 
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solar activity in the sun’s western hemisphere is usually anisotropic (30:109).  However, 

any anisotropies in the solar particle flux are eventually eliminated by the spreading 

effect of the interplanetary and earth’s magnetic fields.  Depending on the initial 

anisotropy of the event, and the strength of the magnetic field, this process may take a 

few minutes to a few hours (7:2).   

The GOES Space Environment Monitor is located at an altitude of approximately 

35,000 km in geosynchronous orbit.  Obviously, this is farther away than 100 km from 

the ground where we are assuming the particles begin to interact with the atmosphere.  

The atmospheric pressure density at 100 km is approximately 0.0003 g/cm2 (12), and 

accounting for the remaining atmosphere above this altitude would not significantly 

improve the dose estimates (1:2). 

The earth was modeled in the MCNPX code as a sphere of liquid water with a 

radius of 6371 km and a density of 1 g/cm2.  The Earth’s atmosphere was modeled as a 

series of 100 spherically symmetric layers, each 1 km thick, consisting of a gaseous 

mixture of nitrogen, oxygen, argon, and carbon atoms.  The density of each layer was 

input as the density reported for the middle of the layer using the U.S. Standard 

Atmosphere from 1976 (12).  The result was an atmosphere with a vertical depth of 

1035.08 g/cm2 (1:2). 

Fluence-to-effective-dose conversion coefficients derived by Pellicioni (17:A1.7) 

were used to convert the secondary particle fluences generated by the MCNPX 2.4.0 code 

into effective dose rates per unit flux, with units of µSv/hr/(protons/cm2/sec/str).  The 
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results are listed in Table 4 below, and can be used for any solar particle event, however, 

geomagnetic cutoff effects have not been taken into account (1:2). 

To calculate the effective dose rate ( ( )E H  with units of μSv/hr) for a specific 

altitude, the following equation is used: 

 ( ) ( ) ( )max

min

,
R

R
E H R R H dRψ= Δ∫ , (19) 

 

where ( )Rψ  is the solar proton spectrum approximated using the algorithm described in 

the previous section, ( ),R HΔ  is the effective dose rate per unit flux (from Table 4), minR  

is the lower rigidity limit of channel P4, and maxR  is the upper rigidity limit found using 

either Eq. (17) or Eq. (18)  (1:3).  Integrating Eq. (19) over 1 MV-wide steps from minR  to 

maxR  gives the total dose rate for a specific altitude. 

The methods outlined above were used to create Figure 13 below.  The plot shows 

the effective dose rate for 20 January 2005 at three selected altitudes.  The event onset 

was 415 minutes after 00 UT (0655 UT).  After the peak, the dose rates decreased as the 

spectrum softened.  For a hypothetical 3-hour flight at 80,000 feet beginning at 0655 UT, 

the total dose accrued would be 110.10 µSv, or 0.11 mSv.  A longer 10-hour flight at this 

altitude would cause a slightly larger total dose of 155.61 µSv.  These values do not take 

into account geomagnetic cutoff or any contribution from the galactic cosmic ray flux. 
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Table 4: Effective dose rate per unit flux of primary solar protons at selected altitudes (H) above 
mean sea level.  Note that geomagnetic cutoff effects have not been taken into account as of yet (1). 

 
Dose rate per unit flux, ( ),R HΔ . 

Units are µSv/hr/(protons/cm2/sec/str) 
Rigidity 
(R), MV 

Energy, 
MeV H=-50ft H=9722ft H=19,588ft H=29,378ft

183.5 17.78 1.000x10-12 1.000x10-12 1.000x10-12 2.901x10-9

245.6 31.62 1.000x10-12 1.000x10-12 1.404x10-10 1.256x10-8

329.7 56.23 1.000x10-12 1.000x10-12 2.978x10-9 2.063x10-7

444.6 100 1.000x10-12 9.739x10-9 2.251x10-7 7.796x10-6

604.4 177.8 9.040x10-8 1.919x10-7 7.713x10-6 1.271x10-4

832.7 316.2 5.281x10-7 2.489x10-5 2.935x10-4 1.960x10-3

1171 562.3 7.556x10-6 2.383x10-4 2.267x10-3 1.207x10-2

1696 1000 4.294x10-5 1.122x10-3 9.903x10-3 5.130x10-2

2549 1778 2.173x10-4 4.428x10-3 3.625x10-2 0.1469 
3991 3162 7.719x10-4 1.495x10-2 9.106x10-2 0.3009 
4848 4000 1.122x10-3 1.915x10-2 0.1147 0.3651 
6495 5623 1.885x10-3 2.356x10-2 0.1319 0.4335 
10898 10000 7.433x10-3 4.966x10-2 0.2413 0.7315 
18695 17780 2.202x10-2 0.1064 0.4464 1.277 
20917 20000 2.751x10-2 0.1227 0.5025 1.41 
32545 31620 6.046x10-2 0.2178 0.7942 2.11 

 
 H=39,197ft H=48,977ft H=58,749ft H=68,511ft H=78,260ft

183.5 8.348x10-8 1.282x10-6 7.556x10-6 1.937x10-5 3.215x10-5

245.6 9.257x10-7 1.521x10-5 7.390x10-5 1.699x10-4 2.622x10-4

329.7 1.199x10-5 1.223x10-4 4.873x10-4 1.004x10-3 1.456x10-3

444.6 1.511x10-4 7.832x10-4 2.407x10-3 4.436x10-3 6.602x10-3

604.4 1.046x10-3 4.495x10-3 1.129x10-2 1.165x10-2 2.446x10-2

832.7 8.491x10-3 2.470x10-2 5.079x10-2 0.1116 0.2307 
1171 4.331x10-2 0.1298 0.2748 0.385 0.449 
1696 0.1731 0.3447 0.4922 0.5712 0.59 
2549 0.3629 0.5957 0.7517 0.7941 0.7719 
3991 0.6252 0.9125 1.064 1.077 1.004 
4848 0.7475 1.079 1.243 1.242 1.15 
6495 0.9214 1.379 1.621 1.653 1.518 
10898 1.484 2.1 2.357 2.296 2.075 
18695 2.418 3.234 3.451 3.241 2.835 
20917 2.638 3.499 3.711 3.45 3.006 
32545 3.792 4.795 4.884 4.425 3.762 
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This event was unique in that it produced the largest ground level event (GLE) 

observed in over 50 years.  Events which produce such high dose rates are very rare.  

However, even with an extremely rare event such as this one, it is obvious that the bulk 

of the accrued dose rate occurs during the few minutes to hours immediately following 

the event onset.  This is the time period most critical to avoid.  This event will be 

compared with other recent significant events in Chapter IV: Event Comparisons. 

Figure 13: Effective dose rates in µSv/hr for three selected altitudes during the 20 January 2005 solar 
proton event and ground level event.  Peak dose rates were high (over 185 µSv/hr) , however rates 

this high were short lived as the spectrum softened rapidly. 

 

The spectra in Figure 12 exhibit some troubling discontinuities between rigidities 

950 and 1225 MV.  This may be a problem with the method used to model the solar 

proton spectrum.  To examine this more closely, several alternative methods for modeling 

the solar proton spectrum will be introduced.  The first makes use of data processing 

procedures at the SEC which convert the differential fluxes from then GOES spacecraft 

into integral flux channels. 
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An Alternate Method for Modeling the Solar Proton Spectrum 

An alternative method for approximating the solar proton spectrum was suggested 

by Sauer (25).  Using this method will allow comparisons to be made between the two 

methods, with the goal that this alternate method will provide a smoother spectrum from 

950 to 1225 MV, where Figure 12 shows that the original method produces a very 

discontinuous spectrum. 

This alternate method begins with four integral channels (labeled I3, I4, I5, and 

I7) along with all four of the HEPAD channels (P8, P9, P10, and P11).  The energy 

ranges for the integral channels are listed in Table 5 below.  This data, as is the case with 

the differential particle data, can be obtained from the NGDC (12). 

 
Table 5: Energy ranges for the integral channels of the GOES energetic particle data (25).  (Note that 

for this method, only channels I3, I4, I5, and I7 are used.)  
 

Channel 
 

Energy Range 
 

I1 >1 MeV (Protons/cm2/sec/str)

I2 >5 MeV (Protons/cm2/sec/str)

I3 >10 MeV (Protons/cm2/sec/str)

I4 >30 MeV (Protons/cm2/sec/str)

I5 >50 MeV (Protons/cm2/sec/str)

I6 >60 MeV (Protons/cm2/sec/str)

I7 >100 MeV (Protons/cm2/sec/str)

 

The HEPAD channels (with the exception of channel P11) are reported in terms 

of differential flux, and thus need to be converted to integral flux.  To accomplish this, 

the HEPAD fluxes reported by the SEC need to be converted back to the original 
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instrument count rates by multiplying each channel by its respective conversion factor 

(listed in Table 6 below).   

 
Table 6: Conversion factors for integral proton data for the HEPAD instrument (24). 

 

Channel Conversion Factor ( )k  

P8       67.5 (cm2-str-MeV) 

P9       67.5 (cm2-str-MeV) 

P10      162.  (cm2-str-MeV) 

P11     1565.  (cm2-str-MeV) 

 

As was the case with the original method described earlier, the background 

galactic cosmic ray count rate must be subtracted to obtain the count rate due only to 

solar protons.  The same method for calculating the background as was described for the 

original method is used here. 

With the background galactic cosmic ray count rate subtracted, the derivation of 

the eight solar proton spectra spanning the eight integral channels can proceed.  These 

eight spectra are combined, just as in the previous method, to make up the piecewise-

continuous approximation of the entire solar proton spectrum.  A full explanation of this 

alternate method is given in Appendix B. 

In Figure 14 below, the modeled solar proton spectrum using this alternate 

method is compared with the solar proton spectrum modeled using the original method.  

At rigidities above 1225 MV, the two methods produce nearly identical spectra.  Between 

950 and 1225 MV, the alternate method just described appears to provide a better 

approximation to the actual solar proton spectrum.  However, below 950 MV, the 
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spectrum derived using the alternate method is much more discontinuous than the 

original method. 

Figure 14: Comparison of the proton spectrum using the original method and the alternate method 
described above.  While the two methods produce nearly identical spectra above 1225 MV, 

discontinuities are evident with each method below 1225 MV. 

 

Figure 15 shows a comparison of the differential effective dose rates found using 

both the original method and the alternate method described in this section.  The plot 

shows the rigidity distribution of the effective dose rate for each method, which illustrates 

where in the rigidity range the bulk of the dose rate comes from.  The problem with the 

original spectrum is manifested as a sharp decrease in the differential dose rate from 950 

to 1225 MV.  Since the bulk of the dose rate appears to come from the rigidity range 

from 650 to 1400 MV, the alternate method most likely does a better job of estimating 

the dose rate since it has an overall smoother approximation of the solar proton spectrum 

in this rigidity range. 
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Figure 15: Comparison of the differential effective dose rate as a function of rigidity using the 
original method and the alternate method.  The original method exhibits a troubling discontinuity 

from 950 to 1225 MV.  The alternate method displays a more realistic looking differential dose rate 
across this range of rigidities. 

 

To further illustrate the trouble the original method has in estimating dose rates 

using the modeled solar proton spectrum, Figure 16 shows the proton spectrum derived 

using both methods along with the dose rate curve using the original method.  It is clear 

that the large discontinuity in the solar proton spectrum derived using the original method 

causes an unphysical decrease in the differential dose rate curve.  This appears to be a 

problem with the way the channel P7 flux is being handled.  Such a sharp decrease in the 

proton spectrum cannot be explained physically, and leads to an even more abrupt 

decrease in the dose rates.  This is especially troubling since the bulk of the dose rate 

appears to come from the range of rigidities spanning 650 to 1400 MV.  The proton 

spectrum derived using the alternate method has less of a discontinuous nature within the 

rigidity range that contributes the most to the dose rate.  There is still, however, a 
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troubling discontinuity with this alternate method at rigidities lower than 950 MV, which 

may lead to errors in dose rates.  This discontinuity does not appear to be physical in 

nature, but more likely a limitation of the method used to model the proton spectrum. 

Figure 16: The proton spectra for both methods discussed are shown along with the dose rate for the 
original method.  This highlights the portion of the proton spectrum that provides the largest 
contribution to the dose rate.  The bulk of the dose rate comes from rigidities 650 to 1400 MV.   

 

Although a complete solution to the problem of the discontinuities in the modeled 

solar proton spectra cannot be offered at this time, a third method for modeling the proton 

spectrum is presented below which attempts to provide a fix to the way in which the 

original method approximates the solar proton spectrum.  This fix is an attempt to 

“connect the dots” between channels P6 and P10 in order to smooth out the proton 

spectrum.  To perform this correction, the method for correcting the differential flux was 

changed (see Chapter III: Correction Factors for GOES Energetic Particle 

Measurements).  In correcting the differential flux in channel P7, the correction factor 
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used was nearly an order of magnitude smaller than the correction factors used for the 

other channels.  To smooth out the spectrum, the correction factor used for channel P7 

was altered to match the factor used for channel P6 at the lower rigidity limit (950 MV), 

and the factor used for channel P10 at the upper rigidity limit (1225 MV).  This change 

effectively smoothed out the solar proton spectrum in this region. 

Figure 17 below is a comparison of the solar proton spectra at 0705 UT during the 

20 January 2005 event modeled using the original method and the revised method, which 

attempts to smooth out the spectrum along channel P7.  It is clear that the revised method 

matches the original method very well with the exception of the large discontinuity 

between 950 and 1225 MV. 

Figure 17: Comparison of the solar proton spectrum using the original method and the revised 
method to “connect the dots” between rigidities 950 and 1225 MV. 

 

Figure 18 shows a plot of the differential dose rates calculated using the modeled 

solar proton spectra from the original method and the revised method just described.  
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Again, the discontinuity from 950 to 1225 MV has been smoothed out providing a more 

realistic curve of the differential dose rate.  Integrating these differential dose rates 

provides a total dose rate of 105.09 µSv/hr for the revised method, compared to 

91.80 µSv/hr using the original method.  This is a 14.5% increase in the dose rate over 

the rate estimated by the original method. 

Figure 18: Comparison of the dose rate at 0705 UT using the original method and the revised method 
described above.  The total dose rate (area under the curve) difference between the two methods for 

0705 UT is 13.30 µSv/hr. 

 

Finally, Figure 19 shows the modeled solar proton spectra using the original and 

revised methods, along with the differential dose rate using the revised method to depict 

where in rigidity the bulk of the dose rate comes from.  The fix provided to the solar 

proton spectrum derived using the original method clearly accounts for a significant 

portion of the estimated dose rate.  The dose rate estimated using the original method was 

12.6% below the dose rate derived using the revised method.   
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Given the more continuous nature of the revised method, and its better handling 

of the solar proton flux between 950 and 1225 MV, the revised method appears to 

provide the best solution to the problem of approximating the solar proton spectrum and 

estimating dose rates at this time. 

Figure 19: Comparison of the proton spectrum using the original method and the revised method 
along with the dose rate using the revised method.  The peak of the dose rate occurs near 820 MV, 
but a significant portion falls between 950 and 1225 MV where the original model of the spectrum 

appears to have trouble. 

 

The dose rates presented above assume that all energetic protons measured by the 

GOES Space Environment Monitor make it to the top of the atmosphere where they 

produce the secondary particulate flux.  This assumption is rarely correct because of the 

effects of geomagnetic shielding discussed earlier.  The lower in latitude one goes, the 

more energetic a particle must be to traverse the earth’s geomagnetic field and reach that 

location.   
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Since no particles below the cutoff rigidity will arrive at a particular location, the 

integration of Eq. (19) should actually start at the cutoff rigidity.  This ensures that 

particles that do not reach the top of the atmosphere are not being counted in the dose rate 

calculation.  These effects will be incorporated into the dose rate calculation in the 

following section. 

Geomagnetic Cutoff Determination 

With methods to model the proton spectrum and compute effective dose rates, 

attention must be given to the problem of geomagnetic cutoff determination.  How much 

does the geomagnetic cutoff rigidity matter?  How much does the cutoff rigidity change 

at a particular location during geomagnetic storming?  If changes in geomagnetic cutoff 

are not significant during a large geomagnetic storm, then accounting for those changes 

will not prove beneficial.  Even if changes in cutoff are significant, will those changes 

affect the dose rates significantly at particular locations and altitudes?  These questions 

will all be investigated in the following paragraphs. 

As mentioned previously, determining geomagnetic cutoff rigidities is a 

computationally intensive process which must be simplified by using various cutoff 

search strategies.  The goal of a search strategy is to balance the computer time required 

against the accuracy of the cutoff determination.  A typical search begins with very high-

energy particles and reduces the energy in fixed steps until the last allowed/forbidden 

transition is found.  This process must be performed for each latitude and longitude of 

interest, as well as each altitude (if variation in altitude is desired).  This approach can be 

accurate but is very time consuming if the steps are small enough to be accurate.  A 
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bounded search strategy starts with high-energy particles and then takes a big step down 

in energy to get below the cutoff.  Once below the cutoff the process steps back up in 

energy and gradually reduces the lower and upper bounds to find the cutoff. 

Using a geomagnetic cutoff rigidity model developed by Smart et al. (27), we can 

calculate the cutoff rigidity for a single location on the globe.  Adding multiple locations 

slows the process down some, but a world-wide grid of cutoffs with a resolution of 5 

degrees in latitude and longitude can be computed in a matter of hours.  Using this model, 

the upper, lower, and effective cutoffs were computed along the 280° East meridian and 

plotted in Figure 20 below.  The cutoff penumbra, located between the upper and lower 

cutoffs, is easily seen.  Comparing this figure with the cutoff penumbra shown in Figure 

7 above shows a remarkable consistency.  These figures show that the cutoff penumbra 

collapses at latitudes greater than 50 degrees, or at rigidities below 1 GV, which should 

make the cutoffs for these latitudes/rigidities easier to compute.   

Unfortunately, this model does not allow the simulation of geomagnetic storming 

which may alter the cutoffs significantly.  To incorporate geomagnetic storming effects, 

the cutoff model must incorporate the complex current systems which exist in the 

magnetosphere along with the geomagnetic field model.  The charging of these current 

systems during geomagnetic storms is responsible for changes to the geomagnetic field, 

which alter the cutoff rigidity. 

For this study, cutoff rigidity effects were incorporated through the use of a 

FORTRAN program designed to calculate the cutoff rigidity at a certain energy and 

location using the International Geomagnetic Reference Field (IGRF) epoch 2000 and the 
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Tsyganenko 1989 (7) magnetospheric model.  The program was developed by the 

University Partnering for Operational Support (UPOS) and is available to the public for 

download (38).  The inclusion of the Tsyganenko 1989 magnetospheric model is 

important because it accounts for the currents that exist in the magnetosphere, allowing 

the simulation of geomagnetic storming through manual alteration of the Kp index.  As 

was described earlier in Chapter II: Solar Energetic Particles, the Kp index is a global 

measure of geomagnetic activity. 

Figure 20: Geomagnetic cutoff penumbra along the 280° East meridian.  Note that the size of the 
penumbra increases as latitude decreases and rigidity increases.  Below approximately 1 GV in 

rigidity, or higher than 50° in latitude, the cutoff penumbra decreases rapidly in width. 

 

The search strategy used by this program is different from that used in the Smart 

et al. cutoff rigidity program (27) in that it iterates through latitude at a fixed energy 

instead of the other way around.  For a particular energy, and along a specific meridian, 

the program steps through latitudes from low to high until an escaping trajectory is found.  
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The program then repeats along a different meridian until a circle around the globe has 

been made at a constant energy.  The energy is then changed and the process is repeated.  

An example of the output produced by this program is shown in Figure 21 below.  The 

program was run for an energy of 1000 MeV which corresponds to a rigidity of 1696 

MV.  The cutoffs were calculated along meridians every 30 degrees beginning with the 

zero degree meridian. 

 
Figure 21: Depiction of the 1000 MeV (1696 MV) geomagnetic cutoff location in the northern 

hemisphere.  The plot was created using the UPOS program designed to compute geomagnetic 
cutoffs by keeping energy constant and iterating through latitudes. 

 

This geomagnetic cutoff program can be used to investigate changes in cutoffs 

due to changes in geomagnetic activity, changes in longitude, and diurnal changes.  To 

investigate the effect that a geomagnetic storm has on cutoffs, the UPOS program was 

run with a Kp index of 0 to simulate quiet geomagnetic conditions, and again with a Kp 
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index of 6 to simulate geomagnetic storm conditions.  The version of the UPOS program 

used in this paper uses the Tsyganenko 1996 magnetospheric model, which allows Kp 

inputs ranging from 0 to 6.  Output from these two simulations were used to create Figure 

22 below.  At low energies, changing the Kp index significantly (from 0 to 6) causes the 

cutoff latitude to change by as much as 5 degrees.  Indeed, research conducted by Smart 

et al. (26:6) indicates that geomagnetic storming characterized by a Kp index of 9 would 

allow as much as a 10 degree shift in geomagnetic cutoff latitude for particle energies up 

to 1 GeV.  Note that in Figure 22, the cutoff differences between active and quiet 

geomagnetic conditions decrease as energies approach 5 GeV.  This suggests that 

geomagnetic activity does not cause a significant variation in the cutoffs for high energies 

or low latitudes.   

The next discussion concerns the longitudinal dependence of the geomagnetic 

cutoffs.  Figure 23 shows that longitudinal differences can cause changes in cutoff 

latitudes as well, sometimes by as much as 7 degrees.  These longitudinal effects are 

regular in nature though and can be explained by the offset of the geomagnetic pole from 

true north.  The greatest variation occurs along the meridian where the geomagnetic pole 

is currently located.  In the northern hemisphere, this is at 288.2° East (71.8° West), and 

in the southern hemisphere, this is at 108.2° East (251.8° West).  Figure 23 shows that for 

the northern hemisphere, longitudes near 280° East have the lowest cutoff rigidities.  This 

is because the north geographic pole is shifted equatorward by 10.3° along the 288.2° 

East meridian.  Similarly, longitudes near 80° East in the northern hemisphere have the 

highest cutoff rigidities because the 80° East meridian is opposite the 280° East meridian.   
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Figure 22: Geomagnetic cutoffs in the northern / southern hemispheres under different levels of 
geomagnetic activity.  Bold ovals indicate cutoffs at the specified energies (MeV) for quiet 

geomagnetic conditions (Kp=0); thin ovals indicate cutoffs for active geomagnetic conditions (Kp=6). 
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Figure 23: Geomagnetic cutoffs calculated along selected longitudes.  The lowest cutoff is in the 
vicinity of 280° East.  This is because the north geomagnetic pole is currently located near 288° East.  

A similar effect is seen in the southern hemisphere near 108° East. 

 

The last parameter to investigate is the diurnal dependence of the geomagnetic 

cutoffs.  Figure 24 depicts the cutoffs along the zero degree meridian at two times, 

12 hours apart.  The zero degree meridian was selected because it provided the largest 

diurnal difference in cutoffs.  Other longitudes examined showed less variation.  It is 

clear that the diurnal differences are negligible when compared to the larger differences 

caused by position and geomagnetic storming effects.  Therefore it is a reasonable 

approximation to ignore the diurnal differences in geomagnetic cutoff. 

This figure also emphasizes the point made earlier in Figure 22 that geomagnetic 

activity affects the cutoffs the most at rigidities less than approximately 5000 MV or 

latitudes greater than approximately 45°.  At higher energies and lower latitudes, the level 
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of geomagnetic activity, characterized by the Kp index in the figure, does not cause a 

significant change in the cutoff. 

With this in mind, the cutoff program can be run using Kp indices to simulate 

different levels of geomagnetic storming.  This will allow the creation of a world-wide 

grid of cutoffs for each Kp index which can be used to determine the cutoff for any 

location during any level of geomagnetic activity.   

Figure 24: Diurnal changes in geomagnetic cutoff rigidity as compared to magnetic storming effects.  
The differences are slightly larger for the Kp 6 data, indicating that the diurnal changes are slightly 

larger during periods of strong geomagnetic activity.  Cutoffs were calculated along the 0° East 
meridian.  Other longitudes showed less variation. 

 

The next question to ask is, “Where in rigidity does the bulk of the dose rate come 

from?”  If the bulk of the dose rate comes from high energies (above 5 – 10 GeV, see 

Figure 22 above), then the level of geomagnetic activity will not have as much effect on 

the cutoff because the energies which produce most of the dose rate are not affected (as 

shown in Figures 22 and 24).  Figure 18 above shows that the bulk of the dose rate comes 
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from a rigidity range of approximately 650 to 1400 MV (203 to 747 MeV).  Looking at 

this energy range in Figure 22, it is clear that the level of geomagnetic activity will have a 

significant impact on the cutoff rigidities we are interested in.   

For the calculations in this paper, the atmosphere is assumed to extend to an 

altitude of 100 km above the surface of the earth.  Thus, cutoff rigidities will be 

calculated for particles incident at an altitude of 100 km.  This altitude was chosen 

because the calculations carried out by Copeland et al. (1:2) were performed for particles 

incident in the atmosphere at 100 km.   

Due to the search method employed by the UPOS geomagnetic cutoff algorithm, 

the lower geomagnetic cutoff rigidity ( LR ) is used.  Although ignoring the penumbral 

effects on cutoff rigidity is not ideal, the simplification is not entirely bad since choosing 

the lowest value for the cutoff will provide the worst-case scenario for the dose rate 

computations.  The effects this simplification has on actual cutoffs will be discussed later 

in Chapter III: Assumptions Employed and Known Sources of Error. 

To create the world-wide grid of cutoff rigidities which will be used to calculate 

dose rates, an interpolation function was used to create cutoff rigidities along selected 

meridians at 1 degree latitude spacing, from 20 degrees to 70 degrees.  Latitudes higher 

than 70 degrees are within the polar cap where cutoff rigidities are so low that all solar 

protons of interest (rigidity greater than 137 MV – see Table 4) are expected to reach an 

altitude of 100 km.  Latitudes below 20 degrees are so low that only particles of 

extremely high rigidity can penetrate to the atmosphere.  These are extremely rare for 

solar proton events and don't contribute significantly to the effective dose accrued.  A 
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linear interpolation was chosen because of errors introduced by higher-order 

interpolations. 

To simplify the cutoff search process, only vertical trajectories were used.  This is 

a common assumption made since it greatly reduces trajectory computation time (5:193).  

Assuming purely vertical trajectories is a good approximation to make if the scale size of 

the gradient in the earth’s magnetic field is less than the gyroradii of the particles (27:7).  

The validity of this assumption and other assumptions made are discussed in the next 

section. 

Assumptions Employed and Known Sources of Error 

In modeling the spectrum of rigidities during solar proton events and then 

calculating effective dose rates for specified locations and altitudes around the earth, 

certain assumptions and simplifications must be made.  The quicker the calculation must 

be made, the more simplifications will be required to speed up the computations.  There 

is a trade-off that must be reached between the timeliness of the calculations and the 

precision required.  Assumptions and simplifications that have been made in the 

processes outlined above are now discussed. 

The first assumption being made in this process is that the particles being 

measured by the GOES spacecraft are representative of the particle flux everywhere 

around the globe at that time.  This is not always the case.  Solar proton events are 

usually anisotropic in nature when they begin.  Particles traveling along field lines 

between the sun and the earth will arrive first, meaning the flux will not be isotropic.  

Over time however, the solar wind and the interplanetary magnetic field cause bending 



 

67 

and scattering in the trajectories of the particles, and the flux eventually becomes much 

more isotropic.  The time required for the flux to take on isotropic characteristics depends 

on the properties of the solar wind, the interplanetary magnetic field, and the nature of the 

accelerated particles. 

The process for modeling the solar proton spectrum first described by Copeland et 

al. (1) uses the GOES Space Environment Monitor’s channel P11 to describe the integral 

proton flux for energies greater than 700 MeV.  However, the calculation of the spectral 

hardness which describes this range of energies is made using information from the 

previous channel (P10).  Thus, an assumption is being made that the form of the proton 

spectrum determined by satellite measurements of energies up to 700 MeV is also valid at 

higher energies (15:76).  Without additional instrumentation, this is a difficult assumption 

to check.  However, as will be shown in the Results and Analysis section below, the bulk 

of the dose rates caused by most solar proton events comes from energies less than about 

830 MeV (1500 MV).  So the extrapolation of the energy spectrum to energies greater 

than 700 MeV will not ordinarily cause a large amount of uncertainty in the calculations. 

When calculating geomagnetic cutoff and modeling proton interactions with the 

atmosphere, the assumption was made that the atmosphere extends to a height of 100 km 

above the surface of the earth, and that no particle interactions take place until the solar 

protons reach this boundary.  This allows us to use 100 km as the altitude at which to 

compute the geomagnetic cutoff.  This is also the altitude that was input into the 

MCNPX 2.4.0 code which was used to convert particle fluences to effective dose rates 

per unit flux.  As was mentioned earlier in Chapter III: Effective Dose Calculation, the 
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atmospheric pressure density at 100 km is low enough (approximately 0.0003 g/cm2 (12)) 

that accounting for the additional atmosphere between 100 km and the GOES orbit would 

not significantly improve the dose rate estimates (1:2). 

In computing the geomagnetic cutoffs, particle trajectories that were not vertically 

incident were ignored.  This greatly simplified the geomagnetic cutoff calculations which 

are the most computationally intensive part of this process.  Previous studies have shown 

that the earth’s magnetic field has a “focusing effect,” such that particle trajectories that 

are not vertically incident reached a similar final asymptotic direction at great distances 

from the earth (27:7).  As mentioned earlier, this is a good approximation to make if the 

scale size of the gradient in the earth’s magnetic field is less than the gyroradii of the 

particles.  In the case of solar proton events, the particles leading to increased dose rates 

in the earth’s atmosphere have been accelerated to relativistic energies.  The gyroradius 

of a 100 MeV proton at geosynchronous orbit is approximately 41.4 10×  km.  The scale 

length of the gradient in the earth’s magnetic field is approximately 36.96 10×  km at this 

location.  So the gyroradius of a 100 MeV proton is nearly an order of magnitude larger 

than the scale size of the gradient of the magnetic field, and therefore, the gyroradii of all 

particles with energies greater than 100 MeV are large enough to safely assume that the 

particles are incident in the vertical direction. 

The UPOS geomagnetic cutoff program which was used to calculate cutoff 

latitudes for specified energies searched for and found the lower bound of the cutoff 

penumbra ( LR ).  Using this lower bound as the actual geomagnetic cutoff in Eq. (19) may 

lead to an overestimation of the dose rate.  However, Figure 20 shows that this 
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overestimation would only occur at rigidities greater than approximately 1500 MV 

(830 MeV) or at latitudes below approximately 45°.  This is because at lower rigidities or 

higher latitudes the cutoff penumbra shrinks rapidly, making the lower cutoff essentially 

the same value as the effective and upper cutoffs.  As will be shown in Chapter IV: 

Results and Analysis, this is not a significant source of error for most solar proton events 

because the bulk of the radiation dose comes from protons with rigidities below 

1500 MV.  One exception was the onset of the 20 January event where, due to the 

extreme hardness of the spectrum, protons with rigidities in excess of 2000 MV 

contributed significantly to the dose rates.   

In order to calculate the geomagnetic cutoff, the UPOS program incorporates a 

geomagnetic field model.  The simulations run for this study made use of the IGRF epoch 

2000 for the earth’s geomagnetic field, and the Tsyganenko 1989 magnetospheric model 

to simulate current systems in the magnetosphere.  The IGRF 2000 field provides a 

significant improvement over simply using a pure dipole field (19), however it is 

important to note that the IGRF is updated every couple of years due to slight variations 

in the geomagnetic field over time.  Therefore, it is important to use the version of the 

IGRF nearest to the time period of the event being studied.  The Tsyganenko 1989 model 

allows manipulation of the Kp index to simulate various levels of geomagnetic storming.  

The Kp index is allowed to vary from 0 to 6 in the version of the model used for this 

study.  However, the model does not show the effects of the magnetopause compression 

during active conditions, which would cause a further decrease in geomagnetic cutoff 

rigidities during strong geomagnetic storms (19).   
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A significant source of error may come from the method in which incident high-

energy protons are converted to effective doses in tissues.  The radiation weighting 

factors listed in Table 1 have undergone frequent revision in the past (17:280) and the 

process by which effective dose rates are calculated from a given proton spectrum is not 

straightforward.  Depending on the path the secondary particles take through the body 

being irradiated (AP, PA, LAT, or ISO – see Chapter II) the coefficients used to calculate 

effective dose rates per unit fluence may change by up to a factor of four (17:A1.7).   
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IV. Results and Analysis 

Chapter Overview 

This chapter covers the results produced using the methods described above.  

First, several historical events are discussed, calculated dose rates for each event are 

presented, and comparisons between the events are made.  Next, comparisons are made 

between dose rates computed with and without taking into account geomagnetic cutoff 

effects.  Then, comparisons are made to results produced by the CARI-6 algorithm which 

does not take into account solar proton events.  Finally, the limited data gathered from 

instruments onboard aircraft is presented for comparison with model results from this 

study. 

The 14 July 2000 “Bastille Day” Event 

The 14 July 2000 “Bastille Day” event was the result of a strong X5 solar flare 

which occurred at 1024 UT.  An image of this flare taken by the Solar Heliospheric 

Observatory (SOHO) is shown in Figure 25 below.  The white enhancement in the center 

of the solar disk shows the location of the flare.  The horizontal white line is an artifact in 

the image.  Energetic particles associated with this event that reached the earth caused 

widespread communications disruptions, problems with satellite operations, and even 

isolated power grid failures (35).  The results presented in this section do not account for 

geomagnetic cutoff effects. 

The solar protons accelerated by this event began to arrive approximately 20 

minutes after the onset of the X-ray flare, with the maximum energetic particle flux 
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occurring at 1230 UT (just over two hours after the flare).  The maximum energetic 

particle flux is defined as the largest flux of particles with energies greater than 10 MeV.  

The dose rates caused by this event peaked at 1200 UT, which was 96 minutes after the 

flare onset.   

 

 
Figure 25: Image from the Solar Heliospheric Observatory’s Extreme Ultraviolet Telescope taken at 
1024 UT on 14 July 2000.  The white enhancement in the center of the image shows the location of the 

flare.  The horizontal white line is an artifact produced by an overload of energy on the imaging 
sensor (35). 

 

The solar proton spectrum estimated at three different times is shown in Figure 

26.  The times 1200 UT and 1210 UT were chosen to capture changes in the solar proton 

spectrum at and immediately following the dose rate peak (which occurred at 1200 UT); 

1600 UT was chosen to show the evolution of the spectrum after 4 hours.  Initially, the 

proton spectrum indicates that the flux decreases with increasing rigidity, as expected.  At 

1200 UT, the solar proton spectrum was at its hardest.  This corresponds to the same time 

that the maximum dose rate was produced.  The solar proton spectra and dose rates 

presented below were all calculated using the revised method described in Chapter III.  
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All dose rate calculations were made using an altitude of 80,000 ft unless otherwise 

noted.   

Figure 26: Solar proton spectra plotted as differential flux (on a log scale) as a function of rigidity at 
1200 UT, 1210 UT, and 1600 UT on 14 July 2000.  

 

Figure 26 above shows that the solar proton spectrum at 1210 UT (10 minutes 

after the peak dose rate) has softened, although only slightly.  The flux of particles with 

rigidities greater than 500 MV has decreased while the flux of particles with rigidity less 

than approximately 340 MV has increased.  The dose rate at 1200 UT was 32.97 µSv/hr, 

while the dose rate 10 minutes later was 30.93 µSv/hr.  This shows that the dose rate 

decreased by 2.03 µSv/hr, or 6.2%, at 80,000 ft from 1200 to 1210 UT, coincident with 

the softening of the spectrum.  However, the >10 MeV particle flux increased by 129.75 

protons/cm2/sec/str, or 7.7%, during this time.  The reason the dose rate decreased despite 

an increase in the flux is because the rigidities which contribute the most to the dose rate 
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are located between 300 and 1500 MV (see  Figure 27), and most of this portion of the 

spectrum actually decreased as shown in Figure 26. 

Four hours later (1600 UT), the solar proton spectrum in  Figure 27 has softened 

further.  The rigidities which contribute the most to the dose rate decreased, leading to a 

dose rate at 1600 UT of 20.37 µSv/hr, or a 38.2% decrease over 4 hours.  The >10 MeV 

flux at 1600 UT increased by 3798.40 protons/cm2/sec/str, or 224.9%, over the flux 

recorded at 1200 UT.  This shows that the spectral hardness plays a very important role in 

determining the amount of dose produced by incoming solar protons. 

 Figure 27: Solar proton spectrum shown as differential flux (log scale) vs. rigidity, and associated 
differential effective dose rate (log scale) at 1200 UT on 14 July 2000 at 80,000 ft.  The greatest 

contribution to the dose rate comes from the rigidity range 300 to 1500 MV. 

 

Figure 28 shows differential effective dose rates at three selected times, and how 

they change over time.  There is not much change in the first 10 minutes of the event, 

with total dose rates decreasing by only 6.2%.  This is expected since there was not a 
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significant change in the spectra for these times shown in Figure 26 above.  At 1600 UT 

however, the total dose rate has decreased by 38.2% since 1200 UT, and the rigidities 

contributing to the dose rate have decreased as well.  This is due to the softening of the 

proton spectrum, with fewer energetic particles being observed that contribute 

significantly to the effective dose rate at 80,000 ft. 

Figure 28: Differential effective dose rates (log scale) vs. rigidity due to solar protons at 1200 UT, 
1210 UT, and 1600 UT on 14 July 2000 at 80,000 ft.  Integrating the differential dose rates shown 

gives total effective dose rates of 32.97 µSv/hr at 1200 UT, 30.93 µSv/hr at 1210 UT, and 20.37 µSv/hr 
at 1600 UT. 

 

Figure 29 below shows the effective dose rates at three selected altitudes as a 

function of time.  At approximately 1035 UT (635 minutes from 00 UT), the dose rates at 

all three selected altitudes begin to increase.  This marks the initial arrival of the energetic 

particles accelerated by the flare.  The maximum dose rate is not reached until 

approximately 85 minutes later (at 1200 UT, or 720 minutes from 00 UT).  Again, the 

maximum dose rate corresponds to the hardest spectrum.  Dose rates then decrease as the 

spectrum softens despite an increase in flux of lower energy particles. 
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Figure 29: Effective dose rates (log scale) over time at three selected altitudes as a function of time 
during the 12 July 2000 solar proton event.   

 

Total doses accrued over hypothetical flights of duration 1, 3, 5, and 10 hours are 

shown in Table 7 below.  These hypothetical flights began at the maximum dose rate 

(1200 UT), and were estimated for an altitude of 80,000 ft.  The dose rates initially are 

not significant, contributing to only 0.15% of the FAA recommended annual limit of 

20 mSv in the first hour.  However, a 10 hour accrued dose of 180.8 µSv contributes 

almost 1% of the recommended annual limit, and this does not include any contribution 

from galactic cosmic rays.  Geomagnetic cutoff effects have not been taken into account. 

 
Table 7: Total effective doses accrued over specified flight times at 80,000 ft during the 14 July 2000 
solar proton event.  Hypothetical flights began at the time of the peak dose rate – 1200 UT. 
 

Total Effective Accrued Doses 

1 hour 3 hours 5 hours 10 hours 

30.0 µSv 76.5 µSv 116.0 µSv 180.8 µSv 
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The 20 January 2005 Event – Largest GLE in 50 Years 

The 20 January 2005 was an extremely rare event in that it produced the largest 

GLE recorded in over 50 years.  Although not associated with an unusually large solar 

flare (the event was caused by an X7 solar flare at 0636 UT), the location of the flare in 

the sun’s western hemisphere was most likely directly connected to the Earth via 

magnetic field lines.  The initial flux was extremely hard, with the spectral hardness 

softening somewhat with time.  The results presented from this event below do not 

account for geomagnetic cutoff effects. 

The energetic particles associated with this event began to arrive within 15-20 

minutes after the X-ray flare, with the maximum energetic particle flux occurring at 

0710 UT (only 34 minutes after the flare).  The maximum energetic particle flux is 

defined as the largest flux of particles with energies greater than 10 MeV.  The dose rates 

caused by this event peaked at 0655 UT, only 19 minutes after the flare onset, indicating 

that the protons were of very high energy to arrive that quickly. 

The proton spectra shown in Figure 30 indicate a much harder flux than previous 

plots have shown.  At 0655 UT, particles with rigidities of nearly 21 GV were observed, 

which is considerably higher than 4 GV, which was the maximum rigidity for particles in 

the 14 July event.  Figure 31 shows the solar proton spectrum for the 20 January event at 

rigidities greater than 1500 MV.  Even at 4 hours past the 20 January event peak, 

particles with rigidities up to 4.5 GV were observed.  The hardness of the spectrum for 

the 20 January event resulted in significantly higher dose rates as compared to the 14 July 

event. 
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Figure 30: Solar proton spectra plotted as differential flux (on a log scale) as a function of rigidity at 
0655 UT, 0705 UT, and 1055 UT on 20 January 2005.   

 

Figure 31: Solar proton spectra plotted as differential flux (on a log scale) as a function of rigidity for 
values greater than 1500 MV at 0655 UT, 0705 UT, and 0855 UT on 20 January 2005.   

 

The solar proton spectrum of the 20 January 2005 event was at its hardest at 

0655 UT, and this also corresponds to the time that the maximum dose rate was produced 

(the same was true for the 14 July 2000 event).  The solar proton spectra and dose rates 
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presented below were all calculated using the revised method described in Chapter III.  

All dose rate calculations were made using an altitude of 80,000 ft unless otherwise 

noted.  0655 UT and 0705 UT were again chosen to capture changes in the solar proton 

spectrum during and immediately following the peak dose rate.  1055 UT was chosen to 

show how the spectrum had changed in 4 hours. 

The proton spectrum measured 10 minutes after the peak dose rate (0705 UT) had 

softened considerably, as seen in Figure 30.  The flux of particles with rigidities above 

1100 MV decreased while the flux of particles with rigidity below 1100 MV increased.  

The dose rate at 0655 UT was an incredible 184.02 µSv/hr, while the dose rate 10 

minutes later was 105.09 µSv/hr.  The dose rate decreased by 78.93 µSv/hr, or 42.9%, at 

80,000 ft from 0655 to 0705 UT.  However, the >10 MeV particle flux increased by 

1357.87 protons/cm2/sec/str, or 174.1%, during this time.  The reason the dose rate 

decreased despite a significant increase in the flux is because the rigidities which 

contribute the most to the dose rate are located between 400 and 7000 MV (see Figure 

32), and the bulk of this portion of the spectrum actually decreased (Figure 30). 

Four hours later (1055 UT), the spectrum shown in Figure 30 softened further.  

The flux of particles with rigidities that contribute the most to the dose rate decreased, 

leading to a dose rate at 1055 UT of 10.59 µSv/hr at 80,000 ft.  This is a 94.2% decrease 

in the dose rate over the 4 hours period.  The >10 MeV particle flux at 1055 UT increased 

by 1059.94 protons/cm2/sec/str over the flux recorded at 0655 UT, which is a 136% 

increase.  This establishes that the spectral hardness plays a very important role in 

determining the amount of dose produced by incoming solar protons. 
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Figure 32: Solar proton spectrum shown as differential flux (log scale) vs. rigidity, and associated 
differential effective dose rate (log scale) at 0655 UT on 20 January 2005.  The greatest contribution 

to the dose rate comes from the rigidity range 400 to 7000 MV. 

 

Figure 33 shows the differential effective dose rates and how they change over 

time for the 20 January event.  Unlike the previous two events discussed, there is a 

significant change in the first 10 minutes of the event, with the total dose rate decreasing 

by 42.9%.  Given the large change in the solar proton spectrum shown in Figure 30 

above, this does not seem unusual.  A significant decrease in the rigidity range 

contributing the most to the dose rate is also evident.  At 1055 UT the total dose rate has 

decreased by 94.2% over the 4 hour period, and the rigidities contributing to the dose rate 

continue to decrease as well.  This is due to the softening of the proton spectrum, with 

fewer energetic particles being observed that contribute to the effective dose rate at 

80,000 ft. 
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Figure 33: Differential effective dose rates (log scale) vs. rigidity due to solar protons at 0655 UT, 
0705 UT, and 1055 UT on 20 January 2005 at 80,000 ft.  Integrating the differential dose rates shown 

gives total effective dose rates of 184.02 µSv/hr at 0655 UT, 105.09 µSv/hr at 0705 UT, and 10.59 
µSv/hr at 1055 UT. 

 

Figure 34 below shows effective dose rates at three selected altitudes as a function 

of time.  At approximately 0650 UT (410 minutes from 00 UT), the dose rates at all three 

selected altitudes begin to increase.  This marks the initial arrival of the energetic 

particles accelerated by the flare (only 16 minutes after the flare!).  The maximum dose 

rate is reached 5 minutes later (0655 UT, or 420 minutes from 00 UT).  Again, the 

maximum dose rate occurred when the proton spectrum was the hardest.  Dose rates then 

decrease as the spectrum softens despite an increase in flux of lower energy particles.  

The arrival of the solar protons was so soon after the initial acceleration mechanism that 

they would be expected to have significantly large energies.  The particles would need to 

be accelerated to relativistic speeds to reach the earth that quickly.  Indeed, this is what 

was observed. 
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Figure 34: Effective dose rates (log scale) over time at three selected altitudes during the 20 January 
2005 solar proton event.   

 

Total doses accrued over hypothetical flights of duration 1, 3, 5, and 10 hours are 

shown in Table 8 below.  These hypothetical flights began at the time of the maximum 

dose rate (0655 UT), and were calculated for an altitude of 80,000 ft.  The dose rates 

initially are significant, contributing nearly 1%/hr of the FAA recommended annual limit 

of 20 mSv at the peak of the event.  However, because the rates decreased so quickly 

after the event peak, a 10 hour accrued dose still only contributes about 1% of the 

recommended annual limit.  These values still do not include any contribution from 

galactic cosmic rays, nor have geomagnetic cutoff effects been taken into account. 

 
Table 8: Total effective doses accrued over specified flight times at 80,000 ft during the 20 January 

2005 solar proton event.  Hypothetical flights began at the time of the peak dose rate – 0655 UT. 
 

Total Effective Doses Accrued 

1 hour 3 hours 5 hours 10 hours 

76.5 µSv 128.3 µSv 153.3 µSv 181.4 µSv 
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Event Comparisons 

By comparing the two events discussed above, conclusions can be drawn about 

the types of events that produce the largest radiation dose rates.  This will provide 

valuable information about the types of events that must be avoided, as well as the types 

of events that require further study.  

The two key factors that affect the total dose accumulation are the magnitude of 

the peak dose rates, and the duration of the enhanced dose rates.  As will be shown, 

events that do not produce the largest peak dose rates can sometimes produce 

significantly larger total accumulated doses over time if the events are longer in duration.  

The results presented in this section do not include geomagnetic cutoff effects, and are 

therefore only valid very near the polar regions.  Comparisons with geomagnetic cutoffs 

included will be presented in Chapter IV below. 

The solar proton events of 14 July 2000 and 20 January 2005 exhibit several 

characteristic differences in their respective proton spectra.  The biggest difference can be 

seen in the spectral hardness of the 20 January event.  The spectrum during the peak dose 

rate (0655 UT) had a very shallow slope, indicating an extremely hard flux (see Figure 

30).  This turns out to be quite a rare phenomenon in that no other event analyzed or 

studied had a spectral hardness even close to that of the January event.  Though this event 

showed the greatest softening of the proton spectrum by 10 minutes after the peak dose 

rate, the spectral hardness and the associated dose rate were still far greater than what was 

calculated for the 14 July 2000 event (by an order of magnitude).  It is interesting to note 

that the >10 MeV particle flux for the 14 July event at its peak dose rate was over 900 
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particles/cm2/sec/str (115%) larger than the >10 MeV particle flux for the 20 January 

event during its respective peak dose rate.  This demonstrates that the size of the flux is 

not as important as the spectral hardness of the flux.   

Tables 9 and 10 below show the flux for each event broken out by selected times, 

detector channels (P4 – P11), and the total (>10 MeV) flux which is the sum of all the 

detector channels.  Several times were chosen near the peak dose rates to capture greater 

resolution of the event while at its peak.  The later times are 2 and 4 hours after the dose 

rate peak to show how the event has changed over a longer period of time.  For reference, 

the estimated dose rates in µSv/hr for each time are listed at the bottom of the tables.  A 

quick comparison of the January and July events makes clear that the >10 MeV particle 

flux alone is insufficient to determine whether an event will produce a large dose rate.   

 
Table 9: Particle fluxes during the 14 July 2000 solar proton event.  Fluxes for each detector channel 
(P4 – P11) are listed, along with the total flux (sum of P4 – P11).  The dose rate calculated at 80,000 ft 

(in µSv/hr) is listed for each time as well.  Geomagnetic cutoff effects are not included. 
 

14 July 2000 
(units: particles/cm2/sec/str) 

Flux 1200 UT* 1205 UT 1210 UT 1400 UT 1600 UT 

P4   938.6501  1069.237  1090.3  2764.643  4608.158 

P5   531.3683   531.2695   522.3114   631.7894   737.7015 

P6   190.9175   185.6522   180.1342   132.851   128.4693 

P7    23.0488    22.5454    21.4383    13.9628    11.361 

P10     1.2547     1.2325     1.1487     0.5409     0.4129 

P11     3.6792     3.4223     3.3372     1.5183     1.2129 

Total  1688.919  1813.359  1818.670  3545.305  5487.315 

Dose 
Rate**    33.23    33.01    32.10    22.97    20.21 

 

*  Indicates the time when the peak dose rate occurred. 
** Dose rates listed for an altitude of 80,000 ft with units of µSv/hr. 
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Table 10: Particle fluxes during the 20 January 2005 solar proton event.  Fluxes for each sensor 
channel (P4 – P11) are listed, along with the total flux (sum of P4 – P11).  The dose rate calculated at 

80,000 ft (in µSv/hr) is listed for each time as well. Geomagnetic cutoff effects are not included. 
 

20 January 2005 
(units: particles/cm2/sec/str) 

Flux 0655 UT* 0700 UT 0705 UT 0855 UT 1055 UT 

P4  205.6761   454.2133   753.3003  1265.758  1528.02 

P5  161.799    523.1528   862.8429   451.6319   252.6756 

P6  135.7994   321.199   400.2872   100.8772    51.2391 

P7   82.0098    27.7166    69.8582     6.8252     4.0691 

P10   30.9028     7.9909    10.884     1.7701     0.7465 

P11  163.6637    30.9294    40.5498     7.1903     3.0406 

Total  779.8508  1365.202  2137.722  1834.053  1839.791 

Dose 
Rate**  184.02    74.50   105.09    20.79    10.59 

 

*  Indicates the time when the peak dose rate occurred. 
** Dose rates listed for an altitude of 80,000 ft with units of µSv/hr. 

 

A better indicator of whether an event will produce a significant dose rate is the 

amount of flux in the high rigidity detector channels.  Figure 35 shows a plot of the sum 

of the fluxes from channels P7 – P11, which covers rigidities greater than 950 MV 

(397 MeV).  This figure provides a much better explanation for the size of the dose rates, 

with the January >950 MV proton flux an order of magnitude larger than the other two 

events for the first half hour.  The figure also shows that the July event had a more 

sustained flux from protons with rigidity >950 MV through 4 hours.  This explains why 

the July dose rates remained high for so long (the dose rate after 4 hours for the July 

event was nearly 10 µSv/hr larger than the dose rate for the January event after 4 hours) 

and suggests that smaller yet sustained event can result in a larger total accrued dose 

during lengthy operations at high altitudes. 
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Figure 35: The >950 MV flux over time (on a log/log scale) for the 14 July 2000 and 20 January 2005 
solar proton events.  Data plotted is from Tables 9 and 10 above.  

 

Table 11 below shows a comparison of the total effective doses accrued during 

each event for a hypothetical flight at 80,000 ft.  Total exposure times calculated were 1, 

3, 5, and 10 hours.  Radiation doses accrued were measured in µSv.  As was shown 

previously (inTable 10), the dose rates for the January event during the first 10 minutes 

were an order of magnitude larger than the July event.  However, the total 1 hour dose for 

the January event shown in Table 11 below, while still larger than the dose accrued for 

the July event, is not as significantly larger as the initial dose rates were.  This is because 

the January event, although powerful at first, decreased rapidly in the flux of particles 
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with rigidities greater than 950 MV.  This, combined with the lower event fluence (as 

compared to the July event), resulted in the July event causing nearly the same total dose 

by the 10 hour point than the January event. 

 
Table 11: Comparison of the total effective dose (in µSv) accrued at 80,000 ft for the indicated time 

periods during the 14 July 2000 and 20 January 2005 solar proton events.  Geomagnetic cutoff effects 
are not included. 

 
Comparison of Total Effective Doses Accrued During Each Solar 

Proton Event* 

Date 1 hour 3 hours 5 hours 10 hours 

14 Jul 2000 30.0 µSv 76.5 µSv 116.0 µSv 180.8 µSv 

20 Jan 2005 76.5 µSv 128.3 µSv 153.3 µSv 181.4 µSv 

* Doses calculated for an altitude of 80,000 ft. 

 

Comparisons to Results With Geomagnetic Cutoff 

Up until now, results have shown dose rates without taking geomagnetic cutoff 

effects into account.  However, as was shown in Chapter III: Geomagnetic Cutoff 

Determination, the geomagnetic cutoff can significantly affect the rigidity range of 

particles that contribute to the radiation environment at aircraft altitudes.  Since the dose 

rates produced are dependent on the rigidity range of the flux, the geomagnetic cutoff 

may be an important factor in determining the amount of radiation received at a particular 

location. 

The first comparison to be made is be between different levels of geomagnetic 

activity.  If active geomagnetic conditions, which are characterized by high Kp indices, 
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cause cutoffs that lead to significantly different dose rates than quiet geomagnetic 

conditions, which are characterized by low Kp indices, then the level of geomagnetic 

activity must be taken into account.  To perform this comparison, geomagnetic cutoffs 

were computed during the 20 January 2005 solar proton event at the peak dose rate and 4 

hours later.   

The dose rates at the event peak (0655 UT) are shown in Figure 36.  The ovals 

nearest the north pole show where the 170 µSv/hr dose rate is, while the equatorward 

ovals show where the 15 µSv/hr dose rate it.  The thick ovals indicate quiet geomagnetic 

activity levels (Kp=0) while the thin ovals indicate stormy geomagnetic activity levels 

(Kp=6).  This figure makes it clear that geomagnetic activity is more important closer to 

the geomagnetic pole, and less important closer to the geomagnetic equator.  This is to be 

expected since Figures 26 and 24 indicate that a change in geomagnetic activity will not 

significantly alter the cutoff for a particle with energies over 5000 MV (4150 MeV), with 

a cutoff located in the middle latitudes.  Changes in geomagnetic activity do, however, 

affect particles with energies near 500 MV (125 MeV), and with cutoffs located in the 

high latitudes. 

The next comparison to be made is between dose rates calculated without taking 

geomagnetic cutoff effects into account, and those calculated including these cutoff 

effects.  Dose rates with geomagnetic cutoff effects included were calculated for two 

locations: one location to represent the mid-latitudes (35° North, 280° East), and one 

location to represent the high-latitudes (50° North, 280° East).  Dose rates calculated 

without cutoff effects are only valid at the poles. 
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Figure 36: Dose rates in µSv/hr at 0655 UT on 20 January 2005.  The thick ovals indicate quiet 

geomagnetic activity levels (Kp=0); the thin ovals indicate stormy geomagnetic activity levels (Kp=6).  
The dose rate without taking geomagnetic cutoff effects into account is 184 µSv/hr. 

 

The 20 January and 14 July events were chosen for comparison because of the 

large initial dose rate in the January event and long duration of the solar proton event in 

the July case.  Calculations were made with no geomagnetic cutoff taken into account, 

and with cutoffs computed at two levels of geomagnetic activity (characterized by Kp=0 

and Kp=6).  This comparison, shown in Tables 12 and 13 below, will therefore show the 



 

90 

dependence of the total accrued dose on the level of geomagnetic activity as well as the 

dependence on latitude.  All calculations shown below are for an altitude of 80,000 ft. 

 
Table 12: Comparison of the geomagnetic cutoff dependency of the total doses accrued during the 

14 July 2000 solar proton event at 80,000 ft.  Geomagnetic cutoffs and doses were calculated for two 
locations representing the middle and high latitudes. 

 

Geomagnetic Cutoff Dependency 
14 July 2000 

Location Geomagnetic 
Cutoff 1 hour 3 hours 5 hours 10 hours 

No Cutoff   30.0 μSv   76.5 μSv  116.0 μSv  180.8 μSv 

3071 MV 
(Kp=0)    0.1 μSv    0.2 μSv    0.4 μSv    0.7 μSv Middle 

Latitudes: 
35N/280E 

2558 MV 
(Kp=6)    0.2 μSv    0.5 μSv    0.8 μSv    1.3 μSv 

No Cutoff   30.0 μSv   76.5 μSv  116.0 μSv  180.8 μSv 

344 MV 
(Kp=0)   29.5 μSv   74.2 μSv  110.7 μSv  164.8 μSv 

High 
Latitudes: 
50N/280E 

224 MV 
(Kp=6)   30.0 μSv   76.3 μSv  115.6 μSv  178.8 μSv 

 

Table 13: Comparison of the geomagnetic cutoff dependency of the total doses accrued during the 
20 January 2005 solar proton event at 80,000 ft.  Geomagnetic cutoffs and doses were calculated for 

two locations representing the middle and high latitudes. 
 

Geomagnetic Cutoff Dependency 
20 January 2005 

Location Geomagnetic 
Cutoff 1 hour 3 hours 5 hours 10 hours 

No Cutoff   76.5 μSv  128.3 μSv  153.3 μSv  181.4 μSv 

3071 MV 
(Kp=0)    5.2 μSv    7.1 μSv    8.0 μSv    9.4 μSv Middle 

Latitudes: 
35N/280E 

2558 MV 
(Kp=6)    7.2 μSv   10.0 μSv   11.3 μSv   13.2 μSv 

No Cutoff   76.5 μSv  128.3 μSv  153.3 μSv  181.4 μSv 

344 MV 
(Kp=0)   76.2 μSv  126.9 μSv  151.0 μSv  178.0 μSv High 

Latitudes: 
50N/280E 

224 MV 
(Kp=6)   76.5 μSv  128.3 μSv  153.3 μSv  181.4 μSv 
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Cutoff effects can drastically reduce the accrued doses, especially in the middle 

latitudes, where doses can be reduced by nearly an order of magnitude.  At higher 

latitudes, total accrued doses are much higher because the cutoffs at these locations are so 

low.  Along the 280°E meridian, the cutoff effects drastically reduce the dose rates 

equatorward of approximately 45°.  This is about 35° equatorward of the geomagnetic 

pole, which is currently located at approximately 80°N, 288°E in the northern 

hemisphere.  In the transition zone, where dose rates begin to shrink rapidly due to 

geomagnetic cutoff effects, accounting for the level of geomagnetic activity is especially 

important.  A change in geomagnetic conditions from quiet to stormy can cause a shift in 

cutoffs by up to 15°, which may lead to a drastic increase in the dose rates expected. 

Comparisons to CARI-6 Output 

It is important to compare the results of this study with output produced by the 

CARI-6 model which is currently used to estimate dose rates at aviation altitudes.  As 

mentioned previously in Chapter II: The CARI-6 Radiation Dose Predictive Code, this 

model only accounts for galactic cosmic rays (5).  It does however take into account 

geomagnetic cutoffs and it also uses an average heliocentric potential to account for some 

changes in geomagnetic activity.  To make the comparisons shown below, the maximum 

dose rates were used, thus assuming a location very near the geomagnetic poles such that 

there is no cutoff.  Further, all results listed below were calculated for an altitude of 

60,000 ft because this is the maximum altitude available in the CARI-6 model (5). 

Table 14 below shows the 1, 3, 5, and 10 hour total accrued doses in µSv for the 

20 January 2005 and the 14 July 2000 events.  Doses computed by the CARI-6 program 
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are the result of galactic cosmic rays, while doses due to solar protons have the galactic 

cosmic ray flux subtracted from the total flux.  The total dose received is the sum of the 

galactic and solar particles and is listed as the Total Dose. 

The January event shows that a significant portion of the total dose during the first 

3 hours came from solar protons.  After 5 hours, the flux of energetic protons from the 

sun had decreased appreciably, and the total dose accrued began to level off.  However, 

even at 10 hours after the event peak, a significant portion of the total dose (over 38%) 

was due to solar protons. 

The July solar proton event initially contributed a smaller percentage to the total 

accrued dose than the January event.  Total accrued doses from solar protons after 1 and 

3 hours were nearly equivalent to the doses accrued from galactic cosmic rays.  However, 

since the July event was characterized by a longer sustained flux of solar protons of high 

rigidity, the dose from solar protons 10 hours after the event peak was still over 46% of 

the total accrued dose.   

The table below shows that up to 10 hours after a large solar proton event, doses 

due to solar protons can still cause a substantial percentage of the radiation dose 

encountered at aviation altitudes.  After 10 hours, the dose rate during the January event 

dropped below 10% of the total dose rate, and therefore, the contribution of solar protons 

to the total accrued doses decreased rapidly.  Dose rates due to solar protons in the July 

event were still nearly 25% of the total dose rate even after the 12 hour point, indicating 

again that this event was unique in its duration. 
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Table 14: Accrued doses in µSv at 60,000 ft for the 20 January 2005 and 14 July 2000 solar proton 
events.  Accrued doses are from galactic cosmic rays alone, solar protons alone, and galactic + solar 

particles.  Doses due to galactic cosmic rays were computed using the CARI-6 model (5).   
 

Total Accrued Doses 
20 January 2005 

Particle Origin 1 hour 3 hours 5 hours 10 hours 

Galactic 14.3 µSv 42.9 µSv 71.5 µSv 143.0 µSv 

Solar 41.23 µSv 65.32 µSv 76.47 µSv 88.63 µSv 

Total Dose 
(galactic + solar) 55.53 µSv 108.22 µSv 147.97 µSv 231.63 µSv 

Total Accrued Doses 
14 July 2000 

Particle Origin 1 hour 3 hours 5 hours 10 hours 

Galactic 11.2 µSv 33.6 µSv 56.0 µSv 112.0 µSv 

Solar 11.24 µSv 28.23 µSv 42.61 µSv 66.17 µSv 

Total Dose 
(galactic + solar) 22.44 µSv 61.83 µSv 98.61 µSv 178.17 µSv 

 

Comparisons to Measured Data 

Ideally, the dose rates predicted by this study for the 14 July 2000 and 20 January 

2005 solar proton events would be compared to actual measurements made by aircraft in 

flight at 80,000 ft during the events.  Unfortunately, the rarity of large solar proton 

events, and the lack of radiation monitors onboard aircraft mean that actual 

measurements of radiation doses during solar proton events are extremely rare.  In fact, 

no measurements were found for aircraft flying during any of the significant solar proton 

events for which accurate particle flux data is available. 

Data was found, however, during two large solar proton events that occurred on 

29 September 1989 and 24 October 1989, during which a Concorde jet equipped with a 
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dosimeter was flying at an altitude of 57,000 ft.  Peak dose rates measured during the two 

events by the Concorde were 61 and 53 µSv/hr respectively.  It is important to note that 

the Concorde flight in September of 1989 was not at the peak of the solar proton event 

(4:91).  If these numbers are extrapolated out to 1 hour, they give a total accrued dose of 

61 µSv and 53 µSv respectively for the two flights.  These numbers show good 

correspondence to the doses presented in Table 14 for the 20 January 2005 solar proton 

event, where a 1 hour accumulated radiation dose due to solar and galactic particles was 

calculated to be 55.53 µSv.   

A direct comparison between the calculated dose rates presented in this study and 

actual dose rate measurements during the same event would be ideal.  However, no direct 

dose rate measurements were found for aircraft airborne during large solar proton events 

for which reliable solar proton flux information from the GOES Space Environment 

Monitor was available.  Although there are no measurements available for direct 

comparisons, the results from the Concorde flight in 1989 suggest that the numbers 

presented in this study are within an order of magnitude of the actual doses produced at 

high altitudes during a solar proton event. 
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V. Summary, Conclusions, and Recommendations 

Summary 

Solar proton events often cause a significant enhancement to the radiation 

environment at aircraft altitudes.  Determining the effective dose rate that personnel and 

equipment are subject to during one of these events is accomplished by measuring the 

flux of solar protons in the near-earth environment, using this to model the spectrum of 

the particles in rigidity, and then using currently established conversion coefficients to 

convert the modeled spectrum into a dose rate. 

The measurement of solar protons is accomplished by a suite of sensors called the 

Space Environment Monitor onboard the NOAA GOES-series spacecraft.  This data is 

available in real-time from the NOAA SEC.  A procedure has been outlined, first 

developed by Copeland et al. (1), to convert the energetic particle data from the SEC into 

effective dose rates at a range of altitudes from the surface of the earth, up to 80,000 ft 

above mean sea level. 

The process was then combined with a method to compute geomagnetic cutoff 

rigidities for different levels of geomagnetic activity.  This further refines the effective 

dose rate calculation to only include those solar protons that are energetic enough to 

penetrate the earth’s magnetosphere and arrive at a given location. 

Two large solar proton events (14 July 2000 and 20 January 2005) were then 

investigated to determine relationships between event fluence, spectral hardness, and 

effective dose rate. 
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Conclusions  

Based on the examination of the three solar proton events in Chapter IV, several 

conclusions can be drawn with respect to solar proton events, their interaction with the 

earth’s magnetic field, and the subsequent radiation that may be produced in the earth’s 

atmosphere.   

The first conclusion is that the effect of spectral hardness is of greater importance 

to the amount of radiation dose received at aircraft altitude than the >10 MeV flux.  An 

accurate model of the solar proton spectrum is extremely important in determining the 

spectral hardness, and thus for predicting dose rates due to solar proton events.  Three 

methods were presented for modeling solar proton spectra, however all three showed 

deficiencies in that the spectra contained discontinuities and the spectra were extrapolated 

at rigidities higher than 1343 MV.  The results presented in Chapter IV demonstrated that 

the size of the >10 MeV solar proton flux is not as important as the energy distribution of 

the protons within the flux.  The 20 January 2005 event was much lower in total flux than 

the 14 July 2000 event.  However, because the 20 January 2005 event was characterized 

by such a high spectral hardness during the first half hour, dose rates were an order of 

magnitude larger than the July event.  This is because the bulk of the dose rate comes 

from the higher rigidities. 

Another factor in the cause of large radiation doses is the duration of the solar 

proton event.  An event such as the 20 January 2005 event that produced extremely high 

dose rates, but only lasted a few hours may not produce a total accrued dose as large as a 

smaller event that lasts for many hours.  The 14 July 2000 event was characterized by 
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much smaller dose rates initially than the 20 January 2005 event.  However, the dose 

rates during the July event did not fall off over time as quickly as the January event.  

While not as large of a threat for the first few hours, the July event produced equally 

large total accrued doses after 5 hours of continuous exposure.  Thus, the duration of the 

energetic particle flux is also an important factor that must be considered when 

forecasting radiation doses at high altitudes.  Simply avoiding high altitude operations for 

the first 2 to 3 hours after a solar proton event may not always be an adequate solution. 

The varying nature of solar proton events makes the challenge of forecasting dose 

rates prior to an event onset a challenging one.  Since dose rates are not only dependent 

on the flux of energetic particles, but also on the spectral hardness and the duration of the 

event, providing real-time warnings is the most effective way to deal with the problem at 

the current time.  The differing nature of the solar proton events studied in Chapter IV 

suggests that there may be different mechanisms which accelerate the protons in these 

events.  If this is the case, then understanding these mechanisms may also explain why 

the spectral hardness and duration of the events can differ so much.  All of these concepts 

must be understood before a reliable method for forecasting radiation dose rates due to 

solar proton events can be developed. 

The next conclusion to be drawn is that magnitude of the dose rate is dependent 

on the location of the particle flux within the spectrum of rigidities.  Both events studied 

showed that the bulk of the dose rate came from the rigidity range from 400 to 2000 MV, 

which corresponds to approximately 82 to 1270 MeV (the only exception was the first 

half hour of the 20 January 2005 event).  This rigidity range corresponds to approximate 
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geomagnetic cutoff latitudes of between 45° and 55°.  For the initial stages of the 20 

January 2005 event, cutoff latitudes were decreased to below 40° in some locations.  

Further, the 400 to 2000 MV rigidity range is within the region that is affected by 

geomagnetic activity, and therefore the level of activity must be taken into account when 

computing geomagnetic cutoffs.  The effect of the geomagnetic cutoffs cannot typically 

be ignored, unless flights are conducted exclusively over the polar regions (at latitudes 

greater than approximately 75°).  Outside of these regions, the geomagnetic cutoff will 

have a significant effect on the radiation dose rates encountered.   

Comparisons to CARI-6 output made in Chapter IV showed that the dose rates 

resulting from solar protons during large solar proton events were equivalent if not 

greater than dose rates produced by galactic cosmic rays.  This means that using the 

CARI-6 program alone to predict dose rates may not provide accurate data for a period of 

time after the eruption of a large solar flare or CME.  Thus work must continue to 

understand the nature of solar proton events so that improved methods for modeling their 

spectra and predicting dose rates can be developed. 

Finally, although no dose rates were actually measured by dosimeters onboard 

aircraft during the solar proton events presented, limited data is available from dosimeters 

onboard the Concorde aircraft which was airborne at 57,000 ft during the large solar 

proton event of 29 September 1989.  During this flight, a peak dose rate of 61 µSv/hr was 

measured, which can be extrapolated to a 1 hour accumulated dose of 61 µSv.  This value 

corresponds well to the 1 hour accumulated dose predicted during the 20 January 2005 

solar proton event.  This gives credibility to the dose rate calculations made in this paper. 
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The main thrust of this study is the determination of whether solar proton events 

produce radiation doses large enough to endanger personnel flying at high altitudes.  

Based on the information gathered from the two recent solar proton events studied, 

including the largest GLE in the last 50 years, the radiation dose rates are significant 

enough to be concerned about, but do not appear to be so large that encountering a single 

event will cause life-altering effects.   

The FAA recommended limit for radiation exposure is 20 mSv per year averaged 

over a 5 year period (see Chapter I).  For aircraft flying at 80,000 ft during solar 

minimum (so that the galactic cosmic ray flux is maximized), and at high latitudes where 

geomagnetic cutoffs are small, the average dose rate received from the background 

galactic cosmic radiation is approximately 15 µSv/hr.  A total annual dose will of course 

depend on the amount of time spent flying at these high altitudes and latitudes.  

Assuming an annual flight time of 1,200 hours, all flown at 80,000 ft and over the 

geomagnetic pole, a pilot could expect to receive an annual dose of 18 mSv. 

Adding the additional dose accrued due to solar protons may exceed the 

recommended limit of 20 mSv/yr.  Assuming a 20-hour flight at 80,000 ft over the 

geomagnetic pole, the total dose received during a large solar proton event could 

conceivably reach 500 µSv, or .5 mSv (see Tables 11 and 14).  Although this number is 

small in comparison to the recommended annual dose limit, flying through several large 

solar proton events would quickly cause a pilot to receive more than 5% of the annual 

limit.  Therefore, it is necessary to actively monitor the dose rates produced by ongoing 

solar proton events so accurate radiation exposure amounts can be kept in crews’ records.  
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Additionally, flights can be diverted around altitudes or latitudes where the risk due to 

radiation exposure is deemed too high. 

The conclusions made in this section are all based on the assumptions discussed 

in Chapter III.  Knowing how these assumptions affect the outcome and improving 

measurement and modeling techniques are important to improving the radiation dose rate 

estimates.  Several topics for further research in these areas are suggested next. 

Recommendations for Future Work 

The problem of determining radiation dose rates at high altitudes due to solar 

energetic particles is by no means solved.  A key assumption which requires further 

investigation is how much the energetic particle measurements vary at geosynchronous 

orbit due to anisotropies in the solar proton flux.  The method used to model the solar 

proton spectrum needs more examination as well.  Specifically, there is a need to develop 

a method to approximate the solar proton spectrum in a more continuous manner.  

Instrumentation to measure energetic particles in specific energy bins above 700 MeV 

would provide greater confidence in the solar proton spectrum above 700 MeV.   

As research continues on radiation doses and shielding techniques, the method of 

converting the modeled solar proton spectra into effective dose rates will undergo 

changes as well.  The MCNPX calculations are being continuously improved, and using 

anisotropic particle fluxes at 100 km would better simulate the actual flux of energetic 

particles incident at the top of the earth’s atmosphere during a solar proton event. 

Another area for further study is measuring the shielding effect of the airframe 

and any techniques or materials used to provide additional shielding to aircrew. 
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Finally, the ability to actually forecast radiation dose rates before a solar proton 

event occurs is possibly the biggest challenge.  This will require further work to 

determine why certain solar proton events produce such hard fluxes while others do not.   
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Appendix A:  Selected Rigidity to Energy Conversions (27:112) 

         PROTON 
 Rigidity     Energy 
      (MV)     (MeV) 
       1.0     0.001 
       2.0     0.002 
       3.0     0.005 
       4.0     0.009 
       5.0     0.013 
       6.0     0.019 
       7.0     0.026 
       8.0     0.034 
       9.0     0.043 
      10.0     0.053 
      11.0     0.064 
      12.0     0.077 
      13.0     0.090 
      14.0     0.104 
      15.0     0.120 
      16.0     0.136 
      17.0     0.154 
      18.0     0.173 
      19.0     0.192 
      20.0     0.213 
      21.0     0.235 
      22.0     0.258 
      23.0     0.282 
      24.0     0.307 
      25.0     0.333 
      26.0     0.360 
      27.0     0.388 
      28.0     0.417 
      29.0     0.448 
      30.0     0.479 
      31.0     0.512 
      32.0     0.545 
      33.0     0.580 
      34.0     0.616 
      35.0     0.652 
      36.0     0.690 
      37.0     0.729 
      38.0     0.769 
      39.0     0.810 
      40.0     0.852 
      41.0     0.895 
      42.0     0.939 
      43.0     0.984 
      44.0     1.031 
      45.0     1.078 
      46.0     1.126 
      47.0     1.176 
      48.0     1.226 
      49.0     1.278 
      50.0     1.331 
      51.0     1.384 
      52.0     1.439 
      53.0     1.495 
      54.0     1.552 
      55.0     1.610 
      56.0     1.669 
      57.0     1.729 
      58.0     1.790 
      59.0     1.852 
      60.0     1.916 
      61.0     1.980 
      62.0     2.045 
      63.0     2.112 
      64.0     2.179 
      65.0     2.248 
      66.0     2.317 
      67.0     2.388 
      68.0     2.460 
      69.0     2.532 
      70.0     2.606 
         
 

PROTON 
 Rigidity     Energy 
      (MV)     (MeV) 
      71.0     2.681 
      72.0     2.757 
      73.0     2.834 
      74.0     2.912 
      75.0     2.991 
      76.0     3.071 
      77.0     3.153 
      78.0     3.235 
      79.0     3.318 
      80.0     3.403 
      81.0     3.488 
      82.0     3.575 
      83.0     3.662 
      84.0     3.751 
      85.0     3.840 
      86.0     3.931 
      87.0     4.023 
      88.0     4.116 
      89.0     4.210 
      90.0     4.304 
      91.0     4.400 
      92.0     4.497 
      93.0     4.596 
      94.0     4.695 
      95.0     4.795 
      96.0     4.896 
      97.0     4.998 
      98.0     5.102 
      99.0     5.206 
     100.0     5.311 
     110.0     6.423 
     120.0     7.639 
     130.0     8.959 
     140.0    10.382 
     150.0    11.909 
     160.0    13.538 
     170.0    15.269 
     180.0    17.102 
     190.0    19.035 
     200.0    21.069 
     210.0    23.203 
     220.0    25.435 
     230.0    27.766 
     240.0    30.194 
     250.0    32.720 
     260.0    35.341 
     270.0    38.058 
     280.0    40.869 
     290.0    43.774 
     300.0    46.772 
     310.0    49.862 
     320.0    53.043 
     330.0    56.315 
     340.0    59.676 
     350.0    63.126 
     360.0    66.663 
     370.0    70.287 
     380.0    73.996 
     390.0    77.791 
     400.0    81.669 
     410.0    85.631 
     420.0    89.674 
     430.0    93.798 
     440.0    98.003 
     450.0   102.286 
     460.0   106.648 
     470.0   111.087 
     480.0   115.602 
     490.0   120.192 
     500.0   124.856 
          
 

PROTON 
 Rigidity     Energy 
      (MV)     (MeV) 
     510.0   129.594 
     520.0   134.403 
     530.0   139.285 
     550.0   149.257 
     560.0   154.346 
     570.0   159.503 
     580.0   164.726 
     590.0   170.015 
     600.0   175.369 
     610.0   180.786 
     620.0   186.266 
     630.0   191.808 
     640.0   197.411 
     650.0   203.074 
     660.0   208.796 
     670.0   214.577 
     680.0   220.415 
     690.0   226.309 
     700.0   232.259 
     710.0   238.265 
     720.0   244.324 
     730.0   250.436 
     740.0   256.601 
     750.0   262.818 
     760.0   269.085 
     770.0   275.402 
     780.0   281.769 
     790.0   288.184 
     800.0   294.646 
     810.0   301.156 
     820.0   307.712 
     830.0   314.313 
     840.0   320.959 
     850.0   327.650 
     860.0   334.383 
     870.0   341.160 
     880.0   347.978 
     890.0   354.838 
     900.0   361.738 
     910.0   368.679 
     920.0   375.659 
     930.0   382.677 
     940.0   389.734 
     950.0   396.829 
     960.0   403.961 
     970.0   411.128 
     980.0   418.332 
     990.0   425.571 
    1000.0   432.845 
    1100.0   507.375 
    1200.0   584.825 
    1300.0   664.773 
    1400.0   746.862 
    1500.0   830.796 
    1600.0   916.323 
    1700.0  1003.234 
    1800.0  1091.350 
    1900.0  1180.521 
    2000.0  1270.620 
    2100.0  1361.537 
    2200.0  1453.179 
    2300.0  1545.466 
    2400.0  1638.328 
    2500.0  1731.706 
    2600.0  1825.548 
    2700.0  1919.807 
    2800.0  2014.443 
    2900.0  2109.423 
    3000.0  2204.713 
    3100.0  2300.288 
         
 

PROTON 
Rigidity     Energy 
      (MV)     (MeV) 
    3200.0  2396.122 
    3300.0  2492.194 
    3400.0  2588.484 
    3500.0  2684.975 
    3600.0  2781.652 
    3700.0  2878.500 
    3800.0  2975.506 
    3900.0  3072.659 
    4000.0  3169.949 
    4100.0  3267.366 
    4200.0  3364.902 
    4300.0  3462.548 
    4400.0  3560.297 
    4500.0  3658.144 
    4600.0  3756.081 
    4700.0  3854.103 
    4800.0  3952.206 
    4900.0  4050.383 
    5000.0  4148.632 
    5100.0  4246.948 
    5200.0  4345.327 
    5300.0  4443.765 
    5400.0  4542.261 
    5500.0  4640.809 
    5600.0  4739.409 
    5700.0  4838.056 
    5800.0  4936.750 
    5900.0  5035.486 
    6000.0  5134.265 
    6100.0  5233.082 
    6200.0  5331.937 
    6300.0  5430.828 
    6400.0  5529.753 
    6500.0  5628.710 
    6600.0  5727.698 
    6700.0  5826.717 
    6800.0  5925.763 
    6900.0  6024.837 
    7000.0  6123.938 
    7100.0  6223.063 
    7200.0  6322.212 
    7300.0  6421.384 
    7400.0  6520.578 
    7500.0  6619.793 
    7600.0  6719.029 
    7700.0  6818.285 
    7800.0  6917.559 
    7900.0  7016.852 
    8000.0  7116.162 
    8100.0  7215.489 
    8200.0  7314.832 
    8300.0  7414.191 
    8400.0  7513.565 
    8500.0  7612.953 
    8600.0  7712.356 
    8700.0  7811.772 
    8800.0  7911.202 
    8900.0  8010.644 
    9000.0  8110.098 
    9100.0  8209.565 
    9200.0  8309.042 
    9300.0  8408.531 
    9400.0  8508.031 
    9500.0  8607.541 
    9600.0  8707.062 
    9700.0  8806.592 
    9800.0  8906.132 
    9900.0  9005.680 
   10000.0  9105.238
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Appendix B:  Derivation of Solar Proton Spectra Using An Alternate Method (25) 

In calculating the dose rate due to solar energetic particles, the energy spectrum of 

the incoming particles must first be modeled.  The following derivation provides an 

alternative method for use in modeling the solar proton spectrum.  This method makes 

use of the I3, I4, I5, and I7 integral particle fluxes, as well as the P8, P9, P10, and P11 

HEPAD particle fluxes as reported by the SEC.  For information about these fluxes, see 

Chapter III: An Alternate Method for Modeling the Solar Proton Spectrum. 

Before beginning, the HEPAD particle fluxes reported by the SEC are converted 

to the original instrument count rates, and the background galactic cosmic ray count rate 

is subtracted.  This process is described in Chapter III: An Alternate Method for 

Modeling the Solar Proton Spectrum.  To convert the solar proton count rates to integral 

fluxes, with units of protons/cm2/sec/str, each HEPAD channel is divided by the 

instrument’s geometric factor (0.73 cm2·str) (24:6).   Finally, for the HEPAD channels 

(P8, P9, P10, and P11) to truly represent integral fluxes, the flux of the larger channels is 

added to the smaller ones in the following manner: 

 

*
11

* *
10 11

* * *
9 10 11

* * * *
8 9 10 11

( 700 MeV)

( 510 MeV)

( 420 MeV)

( 330 MeV)

P

P P

P P P

P P P P

J E J

J E J J

J E J J J

J E J J J J

> =

> = +

> = + +

> = + + +

 (20) 

 

which results in the following set of eight integral fluxes (25): 
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Just as in the original method, each of the eight integral flux channels can be fit 

with a power law of the form  

 
( ) 0

10

1

n
n E

n

J E f E dE

f E

γ

γ

γ

∞ −

− +

=

=
−

∫
. (21) 

 

Making a few substitutions, the following expression for each integral flux is derived: 

 0
n

n nJ J E β−= , (22) 
 

where the spectral hardness,β , and the intensity, 0J , are defined as 

 0
0

1

1
fJ

β γ

γ

= −

=
−

. (23) 

 

(Note that this requires that 1γ ≠  otherwise J →∞ .) (25) 

Given Eq. (22), the integral channels can be fit with power laws of the form 

 1010
10 0( 10 MeV) : ( 10 MeV)J E J J E β−> = = , (24) 

 

to create a piece-wise continuous approximation of the solar proton spectrum.  Solving 

for the constants 10
0J  and 10β , we find that in general, 
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This allows a piecewise spectrum to be fit over all of the integral channels up to the last 

one ( )700J MeV> .  For the last integral channel, the constants 700
0J  and 700β  are 

obtained using the following relations: 

 

700

700

330
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330

700

700
0 700 700

log

log

J
J
E
E

J J E β

β

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

=

. (26) 

 

These relations look backward several channels, which enables the last integral channel 

to be fit to the power law (25).  

This process creates eight solar proton spectra, which can be combined to form a 

piecewise-continuous approximation of the entire solar proton spectrum for rigidities 

greater than 137 MV (10 MeV).  This spectrum is then used to estimate the dose rates at 

specified altitudes and locations using the process described in Chapter III: Effective 

Dose Calculation. 
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